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Introduction. We imagine ourselves—accurately enough, in some evidently
quite good approximation—to inhabit a world of three spatial dimensions. But
as physicists we frequently pretend otherwise; in order the better to expose
the operative principles of (say) classical mechanics, or of quantum mechanics,
we quite standardly have recourse to the pretense that the world has only
one spatial dimension, or two. By means of this commonplace device we
reduce the extraneous clutter present in our exploratory calculations, cast points
of principle in stark relief, and gain access to some valuable diagramatic
opportunities and notational simplifications. The idea seems unproblematic
on its face, and its practical utility has been abundantly demonstrated.

In the electrodynamical literature one encounters, however, only pale
shadows of what might be called the “Method of Dimensional Reduction.”
True, some isolated sub-topics—such, for example, as potential theory—can
usefully be (and frequently are) studied in their 2-dimensional formulations.
And one frequently encounters reference to such idealized structures as “infinite
line charges,” the intended effect of which is to introduce such a high order of
symmetry as effectively to reduce the number of independent spatial variables,
just as invocation of the “steady state” serves to reduce the effective number
of spacetime variables. But the analytical devices brought into play even in
such cases (such, for example, as Gauss’ Law) remain rooted in 3-dimensional
theory.

We have no difficulty divining the meaning of the author who asks us to
“Think of the Newtonian motion of a mass point in an n-dimensional world,”
but when he asks us to “Think now of the motion of an electromagnetic field

‡ Notes from a Reed College Physics Seminar presented  November .
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in such a world” we are at a loss; Maxwell’s equations

∇·∇·∇·E = ρ gauss (1.1)
∇∇∇×B− 1

c
∂
∂tE = 1

c j ampere/maxwell (1.2)

∇·∇·∇·B = 0 no magnetic monopoles (1.3)
∇∇∇× E + 1

c
∂
∂tB = 0 faraday (1.4)

seem so critically dependent upon cross products and curls for their very
meaning as to wilt when transported to any environment other than the 3-space
in which we found them. Which becomes the more surprising when one takes
note of the fact that special relativity—a child (or is she the mother?) of
electrodynamics—thrives in 2-dimensional spacetime; indeed, so habituated did
physicists become to thinking 2-dimensionally of relativity that several aspects
of the theory (such, for example, as Thomas precession) which are absent in
the 2-dimensional case went for a long time unnoticed.

There are, of course, notational alternatives to (1). For example, one can—
to make manifest the Lorentz covariance of (1) or to facilitate discussion of other
formal matters—write

∂µF
µν = Jν (2.1)

∂µG
µν = 0 (2.2)

where I have honored all the standard conventions (x0 ≡ ct, ∂µ ≡ ∂
∂xµ , µ ranges

on {0, 1, 2, 3}, summation on repeated indices is understood), where Fµν and
Gµν are the elements of

F ≡




0 −E1 −E2 −E3

+E1 0 −B3 +B2

+E2 +B3 0 −B1

+E3 −B2 +B1 0


 (3.1)

and

G ≡




0 +B1 +B2 +B3

−B1 0 −E3 +E2

−B2 +E3 0 −E1

−B3 −E2 +E1 0


 (3.2)

and where J0 ≡ ρ, J ≡ 1
c j. One can, within such a framework, easily imagine

a theory which retains (2.1) but in place of (3.1) writes

F ≡
(

0 −E1

+E1 0

)
or F ≡


 0 −E1 −E2

+E1 0 −B3

+E2 +B3 0




But what, were one to elect to proceed in such a manner, is one to make of
(3.2), which involves quite a different population of field variables? How are
the n−1 variables E1, E2, . . . , En−1 which enter into the evident n-dimensional
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generalization of (3.1) to be distributed among (or, for n < 4, squeezed into)
the 1

2 (n−1)(n−2) E-locations available in the associated generalization of (3.2)?

So subtle is the structure of Maxwellian electrodynamics that it seems on
its face to provide only equivocal guidance to the resolution of such questions.
It is our habit to suppose that the source field Jµ(x)—subject, as Maxwell’s
equations mandate, to the charge conservation condition

∂µJ
µ = 0 (4)

—is extrinsically “given,” and that our canonical assignment is to describe
(subject to prescribed initial data) the spacetime-dependence of six fields: the
three components of E(x) together with the three components of B(x). But
the field equations (1) ∼ (2) are eight in number, and conceal therefore some
redundancy. The nature of that redundancy is somewhat illuminated by the
observation that the field equations (2) can be recast1

∂µF
µν = Jν (5.1)

∂λFµν + ∂µFνλ + ∂νFλµ = 0 (5.2)

and that the latter equations become automatic upon introduction by

Fµν = ∂µAν − ∂νAµ (6)

of the 4-potential Aµ(x); the surviving field equation then reads

Aν − ∂ν(∂µAµ) = Jν

Maxwellian electrodynamics appears in this light to be a 4-field theory. But
the construction (6) is invariant under

Aµ −−−−−→
gauge

Aµ + ∂µϕ : ϕ(x) arbitrary

so the Aµ-fields themselves cannot be counted among the “observables” of the
theory. Within the population of gauge-equivalent potentials Aµ there always
exists a member that conforms to the “Lorentz gauge condition”

∂µA
µ = 0 (7)

1 We write Fµν ≡ gµαgνβF
αβ and take gµν to refer to the discovered metric

structure of spacetime:

||gµν || ≡




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 : Lorentz metric

I will have things to say later about how one gets from (2) to (5).
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Imposition of such a condition yields this simplified quartet of field equations

Aν = Jν (8)

but subjects the potentials Aµ to what is, in effect, a constraint . And within
the limits set by that constraint some slop remains, for not only (6) but also
(7) are invariant under

Aµ −−−−−→
gauge

Aµ + ∂µχ provided χ = 0

My intent in these remarks has been to establish that questions of the form
• how many degrees of freedom has the electromagnetic field?
• what are the observables of the theory?2

• how (consistently with relativity) does one write non-redundant field
equations?

lack obvious answers even within standard Maxwellian electrodynamics. That
circumstance might by itself serve to inspire interest in simplified “models” of
the Maxwellian theory, but it serves at the same time to render obscure the
principles that should inform the construction of such models.

1. Formal origin of the 2-dimensional theory. Recently I had occasion to remark3

that Maxwell’s equations can, in notations standard to the exterior calculus, be
formulated

∗∗∗d∗∗∗F = J and ∗∗∗d F = 0 (9)

and in this connection to observe (in response to a question posed by David
Griffiths) that (9) lends natural meaning to the notion of a “2p-dimensional
electrodynamics.” The elements of that notion are elaborated in the essay
just cited where, however, they figure only incidentally to a densely detailed
discussion of a variety of other topics. My objective today will be to provide
an account—stripped of all the encrustations of inessential formalism—of the
simplest instance of such a theory (case p = 1). Of the exterior calculus itself
we will today have no need; it is only to remove the element of notational
mystery that might otherwise attach to (9), and to render intelligible certain
remarks of a “numerological” nature, that I now digress to provide review the
bare essentials of this physicist’s version of that elegant subject.

To speak of an “n-dimensional p -form” is in more familiar terminology to
speak of a totally antisymmetric n-dimensional tensor of covariant rank p; we
agree to write

A ≺ Ai1···ip

2 I remark in this connection that in point of fact one observes E and B
never directly, but only via their effects. . .which is to say: via their entry into
the construction of the stress-energy tensor Sµν . So the question becomes:
how many degrees of freedom has Sµν? For related discussion see p. 326 of my
electrodynamics () or E. Katz, “Concerning the number of independent
variables of the classical electromagnetic field,” AJP 33, 306 (1965).

3 See especially §4 of “ Electrodynamical Applications of the Exterior
Calculus” ().
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to symbolize the statement that “A is the p -form with components Ai1···ip .”
0-forms are scalars, 1-forms are covariant vectors, antisymmetry comes first into
play at p = 2 and entails that p -forms with p > n are an impossibility. Writing
dimA to signify the number of independently specifiable components of A, we
have

dimA =
(
n

p

)
and observe—the point is elementary, but will acquire major importance—that
p -forms and (n− p)-forms have identical dimension:

(
n
p

)
=

(
n
n−p

)
.

Indices are manipulated (i.e., raised and lowered) with the aid of the second
rank metric tensor gij and its contravariant companion gij ; one has giαgαj = δij
and g ≡ det||gij || �= 0, and in the electrodynamic application assumes the metric
tensor to possess the familiar Lorentzian structure

||gij || =




+1 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1




The “Hodge star operator” ∗∗∗ sets up a correspondence between p -forms
and (n− p)-forms as follows:

if A ≺ Ai1···ip then ∗∗∗A ≺ 1
p!

√
gεi1···in−pα1···αp

Aα1···αp

and can be shown to possess this important property:

∗∗∗∗∗∗A = (−)p(n−p)A ∼ A

Here εi1···in is the familiar n-dimensional Levi-Civita tensor; it is a totally
antisymmetric tensor density of weight W = −1, and possesses therefore the
wonderful property that it transforms by numerical invariance: it is given in all
coordinate systems by

εi1···in =

{+1 if i1i2 · · · in is an even permutation of 12 · · ·n
−1 if i1i2 · · · in is an odd permutation of 12 · · ·n

0 otherwise; i.e., if any index is repeated

The
√
g (which transforms as a scalar density of weight W = +1) is introduced

into the definition of ∗∗∗A in order to compensate for the weight of εi1···in , which
it does at this cost: it introduces i-factors whenever the metric is negative-
definite (g < 0). I will write    in place of ∗∗∗ when it is my intention that the

√
g

should be omitted; in relativistic applications this will, in fact, be my standard
practice.

The multiply-indexed objects ∂jAi1···ip do, in general, not transform as
the components of a tensor. It is this fact which, in tensor analysis, serves
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principally to motivate the introduction of the “covariant derivative.” The
exterior calculus proceeds alternatively from the observation that the act of
summing over the signed permutations of {j; i1 · · · ip} serves to cancel out all the
tensoriality-destroying terms present in ∂jAi1···ip ; it proceeds, in other words,
from the observation that the antisymmetric part of ∂jAi1···ip is tensorial. If A
is a p -form, then the “exterior derivative” of A—denoted dA—is a (p+1)-form,
defined as follows:

dA ≺ 1
p!δi1i2···ip+1

βα1···αp∂βAα1···αp

Here δi1i2···ip j1j2···jp is the “generalized Kronecker tensor” of rank 2p; it is totally
antisymmetric in all superscripts, totally antisymmetric in all subscripts, and
(since assumed to be weightless) transforms by numerical invariance; it can in
all coordinate systems be described

δi1i2···ip j1j2···jp =

∣∣∣∣∣∣∣∣∣
δi1 j1 δi1 j2 · · · δi1 jp
δi2 j1 δi2 j2 · · · δi2 jp

...
...

. . .
...

δip j1 δip j2 · · · δip jp

∣∣∣∣∣∣∣∣∣
Evidently d annihilates n-forms, while from ∂i∂j = ∂j∂i it follows that ddA = 0
in all cases. The very powerful Converse of the Poincaré Lemma asserts
that if A is a p -form (p ≥ 1) such that dA = 0 then there exists a (p− 1)-form
B such that A = dB. B is determined only up to a “gauge transformation”

B −→ B′ = B + dG where G is an arbitrary (p− 2)-form

and—this is the amazing part!—can (under weak hypotheses, and up to gauge)
be described explicitly:

Bi1···ip−1
(x) =

∫ 1

0

Aαi1···ip−1
(τx)xατp−1 dτ

where x ≡ (x1, x2, . . . , xn).

The operators ∗∗∗ and d collectively exhaust the “operational alphabet” of
the exterior calculus, and since

∗∗∗∗∗∗ ∼ 1 and dd = 0

the only “words” constructable from them are snippets from the string

· · · ∗∗∗d∗∗∗d∗∗∗d∗∗∗d∗∗∗d∗∗∗d∗∗∗d∗∗∗ · · ·

The 1st-order differential operators available to the theory are four in number:

d : sends p-forms −→ (p + 1)-forms
∗∗∗d : sends p-forms −→ (n− p− 1)-forms
d∗∗∗ : sends p-forms −→ (n− p + 1)-forms
∗∗∗d∗∗∗ : sends p-forms −→ (p− 1)-forms



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The available 2nd-order differential operators are also four in number:

d∗∗∗d : sends p-forms −→ (n− p)-forms
∗∗∗d∗∗∗d : sends p-forms −→ p-forms
d∗∗∗d∗∗∗ : sends p-forms −→ p-forms
∗∗∗d∗∗∗d∗∗∗ : sends p-forms −→ (n− p)-forms




Associations of the form

grad ←→ d

curl ←→ ∗∗∗d
div ←→ ∗∗∗d∗∗∗

are recommended thus to our attention. They entail

curl · grad ←→ ∗∗∗d · d = 0

div · curl ←→ ∗∗∗d∗∗∗ · ∗∗∗d = 0

and thus give much-generalized meaning to a pair of familiar identites—identites
which are, in fact, the source of all the “potentials” encountered in physical
applications.

Returning now to the physics that motivated the preceding digression. . .

The F that appears in the exterior formulation (9) of Maxwell’s equations
is understood to be a 4-dimensional 2-form (and J therefore a 4-dimensional
1-form); specifically

F ≺ Fµν with ||Fµν || =




0 +E1 +E2 +E3

−E1 0 −B3 +B2

−E2 +B3 0 −B1

−E3 −B2 +B1 0




and therefore

   F ≺ 1
2εµναβF

αβ ≡ Gµν with ||Gµν || =




0 −B1 −B2 −B3

+B1 0 −E3 +E2

+B2 +E3 0 −E1

+B3 −E2 +E1 0




Evidently ||Fµν || = F and ||Gµν || = G where F and G are the matrices defined
at (3). Observe that Fµν is “elecrical” if it contains an 0 among its subscripts,
and “magnetic” otherwise.

“n -dimensional electrodynamics” proceeds from the assumptions that
the field equations (9) are to be retained as they stand, but the stipulation
that F be a 2-form is to be abandoned; in place of the latter, one stipulates
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that F is a p -form and so also is ∗∗∗F. Immediately, p = n − p, which forces
n = 2p to be even:

F and ∗∗∗F are both p -forms, with p =
dimension of spacetime

2

The “electromagnetic field” acquires therefore a total of
(
2p
p

)
independently

specifiable components, of which(
2p−1
p−1

)
= 1

2

(
2p
p

)
components are “electrical”(

2p−1
p

)
= 1

2

(
2p
p

)
components are “magnetic”

We have in our terminology preserved here the notion that Fi1···ip is “elecrical”
if it contains an 0 among its subscripts, and “magnetic” otherwise, and we need
only to look to the Pascal triangle to see how it comes about that(

2p−1
p−1

)
=

(
2p−1
p

)
and

(
2p−1
p−1

)
+

(
2p−1
p

)
=

(
2p
p

)
Evidently

• in 2-space F is a 1-form, with 2-components, of which 1 is “electrical”
and 1 “magnetic;”
• in 4-space F is a 2-form, with 6-components, of which 3 are “electrical”

and 3 “magnetic” (this is the physical situation);
• in 6-space F is a 3-form, with 20-components, of which 10 are “electrical”

and 10 “magnetic;”
• in 8-space F is a 4-form, with 70-components, of which 35 are “electrical”

and 35 “magnetic;” etc.
“Electrodynamics” becomes, by this account, “impossible in odd-dimensional
spacetime.”

2. Fundamentals of the 2-dimensional theory. In the simplest case, F becomes
a 2-dimensional 1-form; the “electromagnetic field” becomes, that is to say, a
real vector field

F ≺ Fµ which admits of natural display
(
F0

F1

)
≡

(
E
B

)
(10.1)

Then—since the metric is taken to have the Lorentzian structure

||gµν || =
(

1 0
0 −1

)

—we have (
F 0

F 1

)
=

(
+E
−B

)
giving

   F ≺ εµαF
α which acquires the display

(
G0

G1

)
=

(
−B
−E

)
(10.2)
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The source term J is, in 2-dimensional theory, an 0-form (a scalar field):

J ≺ J (11)

The field equations (9) acquire finally4 these specific meanings:

∗∗∗d∗∗∗F = J ≺ −(∂0F0 + ∂1F1) = J

∗∗∗d F = 0 ≺ (∂0F1 − ∂1F0) = 0

Equivalently

∂1F1 − ∂0F0 = J (12.1)
∂0F1 − ∂1F0 = 0 (12.2)

which in “physical” variables read

∂1B − ∂0E = J (13.1)
∂1E − ∂0B = 0 (13.2)

These, I claim, are the “Maxwell-Lorentz equations,” as they would appear if
spacetime were 2-dimensional. Equations (13) comprise a system of two coupled
first-order partial differential equations in two field variables E(x0, x1) and
B(x0, x1). The source function J(x0, x1) is assumed to have been prescribed.

It is interesting to observe that (13.1) more nearly resembles Maxwell’s
modification (1.2) of Ampere’s Law than Gauss’ Law (1.1), and that (13.2)
resembles Faraday’s Law (1.4) except that—rather surprisingly—a sign (Lenz’
Law) has been reversed.

The absence of a statement corresponding to Gauss’ Law is, perhaps, not
surprising: Gauss’s Law insures that the field due to an isolated point charge
“falls off geometrically,” which in 1-dimensional space entails no “fall off” at
all.5 The 2-dimensional theory does, in fact, not recognize the existence of any
kind of “charge”—neither magnetic nor electric—though on the right side of

4 Which is to say, after some fairly tedious computation. It helps to know
that the action of the generalized “div” operator ∗∗∗d∗∗∗ can be described

∗∗∗d∗∗∗A ≺ (−)p(n−p)
1
p!

1√
g
δi1···ip−1b

k1···kp∂b
(√

gAk1···kp

)
For details relating to the derivation of this formula see again the material cited
in footnote 3, where it appears as equation (38).

5 Recall in this connection the electrical fields which in standard theory
are associated with “uniformly charged sheets;” the idealization is, of course,
unphysical—intended to direct one’s attention to the “near zone” of a
(necessarily bounded) real charged surface.
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(13.1) it does recognize the existence of what we find it natural to call “electrical
current.”6 And because the theory contains no “charge,” it contains also no
analog of (4)—no “charge conservation.”

Equations (13) can easily be “decoupled by differentiation,” in the manner
standard to Maxwellian electrodynamics; one obtains

E + ∂0J = 0 (14.1)
B + ∂1J = 0 (14.2)

where ≡ gαβ∂
α∂β = ∂2

0 − ∂2
1 , and from which it follows that

E = B = 0 at source-free points in spacetime (15)

It is (by the Converse of the Poincaré Lemma) a general implication of
(9) that F can be represented F = dA where A is a (p − 1)-form, and is
susceptible to gauge transformation A −→ A′ = A+dϕϕϕ where ϕϕϕ is an arbitrary
(p − 2)-form. In 2-dimensional electrodynamics the potential A becomes an
0-form; we are led to write

E = −∂0A and B = −∂1A (16)

Compliance with (13.2) is thus rendered automatic, and the remaining field
equation (13.1) becomes

A = J (17)

Equations (14) can be recovered as corollaries of (16) and (17). Comparing (16)
to

E = −∂0A−∇∇∇ϕ and B = ∇∇∇×A

we see that A most closely resembles the familiar vector potential.

6 It may be useful to place this surprising development in more general
context. In 2p -dimensional electrodynamics J is a (p− 1)-form; writing

J ≺ Ji1i2...ip−1

we associate “charges” with terms of the form J0i1...ip−2 , which are
(

2p
p−2

)
in

number. At p = 1 we have
(

2
−1

)
= 0 (this is the result returned by Mathematica,

and it is consistent with a standard convention; see p. 2 of J. Riordan’s
Combinatorial Identities ()). We expect on these grounds

• to encounter 1 kind of charge in the 4-dimensional theory;
• to encounter 6 kinds of charge in the 6-dimensional theory;
• to encounter 28 kinds of charge in the 8-dimensional theory;
• to encounter 120 kinds of charge in the 10-dimensional theory.
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In Maxwellian electrodynamics one must—as previously remarked—invoke
the “Lorentz gauge condition”

∗∗∗d∗∗∗A = 0 ≺ ∂µA
µ = 0

to achieve the analog Aµ = Jµ of (17). In 2-dimensional electrodynamics no
such condition is preconditional to (17), and in fact the theory is not robust
enough to support such a condition, just as (and for the same reason that) it
is unable to support the continuity condition

∗∗∗d∗∗∗J = 0 ≺ ∂µJ
µ = 0

In 2-dimensional electrodynamics the A-potential is (like the “potential energy
function” U(x, y, z) encountered in mechanics) a scalar , and is susceptible to
“gauging” only in this almost trivial sense:

A −−−−−→
gauge

A + constant

3. Construction of the stress-energy tensor. Great physical importance attaches
in Maxwellian electrodynamics to the stress-energy tensor

Sµν = FµαF
α
ν − 1

4 (FαβFβα) · gµν (18)

of which

S =




S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33




=




1
2 (E ·E + B ·B) −(E×B)1 etc. etc.
−(E×B)1 C11 + 1

2 (E ·E + B ·B) etc. etc.
−(E×B)2 C21 etc. etc.

etc. etc. etc. etc.




(here Cij = Cji ≡ −EiEj −BiBj) provides an explicit matrix description. The
Maxwellian stress-energy matrix is manifestly symmetric and traceless, and is
quadratic in the (undifferentiated) field components. In §7 of some work already
twice cited I show how, within the framework afforded by the 2p -dimensional
theory, to construct an Sij that shares those same properties.7 Here, however,
we have interest only in the case p = 1.

7 Within that context I was amazed to discover that the physically essential
condition

energy density S00 ≥ 0

serves in effect to force the spacetime metric to possess its familiar Lorentzian
structure! The argument casts new light on the (seldom asked) question
“Why did God select the Lorentz metric?” but fails to illuminate the question
“Why did God set p = 2?”
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It is entirely natural in the light of our Maxwellian experience to construct
(consistently with the general theory to which I have just alluded)

S =
(
S00 S01

S10 S11

)
=

(
1
2 (E2 + B2) EB

EB 1
2 (E2 + B2)

)
(19)

and to observe that in consequence of the field equations

∂0

(
1
2 (E2 + B2)

)
− ∂1

(
EB

)
= −JE

∂0

(
EB

)
− ∂1

(
1
2 (E2 + B2)

)
= −JB

In short,
∂µSµν = −JFν (20)

which—except for the odd sign (which can be traced to the odd sign present in
(13.2))—very much resembles the ∂µSµν = JαFαν encountered in Maxwellian
electrodynamics. Drawing inspiration from (18) we observe that (19) can be
notated

S =
(
F0F0 F0F1

F1F0 F1F1

)
− 1

2 (F0F0 − F1F1)
(

1 0
0 −1

)
giving

Sµν = FµFν − 1
2 (FαFα) · gµν (21)

The Sµν thus described is manifestly symmetric and traceless:

Sµν = Sνµ and Sαα = 0 (22)

The individual matrix elements of S support “physical interpretations” (if we
may call them that) which can be described(

S00 S01

S10 S11

)
=

(
energy density c ·momentum density
1
c ·energy flux momentum flux

)
(23)

in which connection we note that in 2-dimensional electrodynamics

energy density S00 = 1
2 (E2 + B2)

is in fact positive semi-definite, and mimics well its Maxwellian counterpart.

Alternative descriptions of Sµν are readily available, and sometimes useful.
We can, for example, write

Sµν = GµGν − 1
2 (GαGα) · gµν

and since
FαFα = −GαGα = E2 −B2 (24)

we can use this result in combination with (21) to obtain

Sµν = 1
2

[
FµFν + GµGν

]
(25)
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This elegantly symmetric equation possesses a direct counterpart in Maxwellian
electrodynamics,8 and will later be seen to foreshadow an important internal
symmetry of the theory. Drawing finally upon (16)—which is to say, upon

Fµ = −∂µA (26)

—we readily obtain

Sµν = (∂µA)(∂νA)− 1
2 (∂αA)(∂αA) · gµν (27)

Since A enters never nakedly but always differentiated, the expression on the
right side of (27) is gauge-invariant.

To the extent that Sµν itself enters not nakedly but only via (20) into
physical arguments, one has to admit the possibility of “gauge transformations”
of this somewhat novel form:

Sµν −→ S̃µν = Sµν+Tµν

Tµν constrained only by ∂µTµν = 0

In light of this circumstance, the associations (23) acquire seemingly the status
of mere conventions (figures of speech), and appear to lose any claim to being
statements of physical fact; one has at this point in field theories generally—as in
2-dimensional electrodynamics particularly—to be on guard against falling into
what philosophers have called “the fallacy of misplaced concreteness.” Suppose,
for example, we were to define

T ≡
(
∂1T1 ∂1T0

∂0T1 ∂0T0

)
: T0 and T1 assigned any meanings we please

Then
∂µTµν = 0 automatically, in all cases

by a quick calculation that hinges on the special structure of the Lorentz metric
(∂0 = +∂0 but ∂1 = −∂1).

The preceding paragraph began, however, with a conditional “to the extent
that. . . ” What are we to make of the circumstance that Sµν does appear
“nakedly” as a source term in the gravitational field equations? My tentative
response would be that we “turned off” gravitational effects when we elected
to work in flat spacetime.9 The stress-energy tensor enters nakedly also into

8 See p. 299 in my classical electrodynamics ().
9 And anyway, we don’t at the moment possess a 2-dimensional general

relativity. The loss of Gauss’ law prepares us to anticipate a parallel loss of
Newton’s universal law of gravitation, and suggests that “2-dimensional general
relativity” may in some respects be as strange as 2-dimensional electrodynamics.
It would, however, be a mistake to accept “2-dimensional answers” to questions
of the sort we now confront; the deeper issue retains its force irrespective of
dimension.
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the construction of (for example) the angular momentum tensor (but in
2-dimensions rotation is not an issue). Radiation theory proceeds from an
examination of naked Sµν terms, but its predictions remain unphysical in the
absence of detection processes—field/particle interactions, which hinge on (20).
Since I am able to draw no firm conclusions, let me report why I undertook this
discussion.

In January of  I received for review, from the editors of Physical
Review, a manuscript entitled “Alternative electromagnetic energy-momentum
tensors” in which the author (a professor of electrical engineering at MIT) puts
forward the claim that a stress-energy tensor alternative to (18) is, in certain
applications, more useful. I found the manuscript to be, in several respects, so
idiosyncratic as to be virtually impenetrable; clarity came to me only when I
recast the author’s argument in language afforded by the 2-dimensional
formalism (it was at this point that I gained my first inkling that 2-dimensional
electrodynamics might actually be good for something!). The author had, in
effect, set

T0 = − 1
2A∂0A and T1 = − 1

2A∂1A

and obtained (I omit the fairly straightforward details)

S̃µν = 1
2

{
JAgµν −A(∂µ∂νA) + (∂µA)(∂νA)

}
which differs markly from the Sµν of (27): not only ∂A but also ∂∂A and J

(equivalently A, by (17)) enter into the construction of S̃µν which, because
it contains naked A-terms, has lost the property of gauge invariance. The
adjustment Sµν −→ S̃µν , if arguably an “improvement” on some grounds, is
hardly an æsthetic improvement. Yet the author proposes to call the tensor

Tµν = S̃µν − Sµν

“beauty,” his intent being to associate himself with the view put forward long
ago by M. Mason & W. Weaver, who in their classic text10 report that

. . . “we do not believe that ‘Where?’ is a fair or sensible question to ask
concerning energy. Energy is a function of configuration, just as beauty
of a certain black-and-white design is a function of configuration. We
see no more reason or excuse for speaking of a spatial energy density
than we would for saying, in the case of a design, that its beauty was
distributed over it with a certain density. . . ”

The manifest ugliness of S̃µν is, however, a matter of no physical concern (except
in contexts where she appears nakedly), for it is clear by derivation—and is
anyway susceptible to easy direct confirmation (use J = ∂1B − ∂0E = A)
that ∂µS̃µν = −JFν ; i.e., that S̃µν and Sµν support the same physics. As
Mason & Weaver remark,

“All statements are true if they are made about nothing.”

10 The Electromagnetic Field (), p. 264.
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4. Contact with the Lagrangian physics of strings. The field equation (17) is
familiar as the equation of motion of a forced string, about which a great deal
is known. This remark serves, in particular, to place at our immediate disposal
the rich resources of classical field theory. We find it natural in this light to
introduce a Lagrange density of the form

L = Lfree field + Linteraction

with
Lfree field ≡ 1

2g
αβ(∂αA)(∂βA) = 1

2

{
(∂0A)2 − (∂1A)2

}
(28.1)

and where the structure of

Linteraction ≡ JA (28.2)

is so simple as to provide 2-dimensional expression of the “principle of minimal
coupling.” The resulting field equation

∂0
∂L

∂(∂0A)
+ ∂1

∂L

∂(∂1A)
− ∂L

∂A
= 0 (29)

reads {
∂2
0 − ∂2

1

}
A− J = 0

which reproduces (17), as was our intent.

Field theory (Noether’s theorem, as it pertains to spacetime translations)
supplies11 this general description of the stress-energy tensor:

Sµν = gµλ
∂L

∂(∂λA)
(∂νA)− L · gµν

Working from Lfree we are led thus to write

Sµν = (∂µA)(∂νA)− 1
2 (∂αA)(∂αA) · gµν

which precisely reproduces (27).

Importance attaches in Lagrangian field theory to the circumstance that
field equations fix the Lagrange density only to within a “gauge transformation”
of the form

L −−−−−→
gauge

L̂ = L + ∂αΛα : Λα arbitrary functions of fields & coordinates

Returning with this news to the 2-dimensional single-field system at hand, we
construct

L̂free = Lfree + ∂0Λ0 + ∂1Λ1 : Λ0 and Λ1 are arbitrary functions of A

and observe that Lfree −→ L̂free induces

Sµν −→ Ŝµν = Sµν + Tµν

with

Tµν =
{
gµ0

∂Λ0

∂A
+ gµ1

∂Λ1

∂A

}
(∂νA)−

{
∂Λ0

∂A
(∂0A) +

∂Λ1

∂A
(∂1A)

}
· gµν

11 See p. 27 of my relativistic classical fields ().
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which is found to entail

||Tµν || =


−∂Λ1

∂A (∂1A) +∂Λ
0

∂A (∂1A)

−∂Λ1

∂A (∂0A) +∂Λ
0

∂A (∂0A)


 =


−∂1Λ1 +∂1Λ0

−∂0Λ1 +∂0Λ0




Quick calculation establishes that

∂µTµν = 0 : all gauge functions Λ0(A) and Λ1(A)

though this pair of equations would have been lost had we allowed the gauge
functions to possess any symmetry-breaking direct dependence upon the
spacetime coordinates x0 and x1. We observe that

||Tµν || becomes the T of §3 by notational adjustment: Λ0 → +T0

Λ1 → −T1

and that to recover “beauty” we have only to set

Λα = − 1
4g
αβ∂β(A2) = − 1

2A · g
αβ∂βA

This, however, is a step that we are—as well-bred field theorists—strongly
disinclined to take. . . for to write

Lfree −→ L̂free = Lfree+∂αΛα

∂αΛα = − 1
4 A2

= − 1
2 (∂αA)gαβ(∂βA)− 1

2A· A

is to introduce a gauge term that depends not only upon A but also upon the
first and second derivatives of A.12 The situation is made even more bizarre by
the observation that

= −Lfree − 1
2AJ

We have come upon a formal tangle which I hope one day to be in position to
illuminate. But today is not the day; we have other, more pressing, work to do.

We have proceeded thus far in this field-theoretic discussion by direct
appropriation of the physics of strings, as though A were the field of interest.
But A is not even a “physical” field (it is a “potential”—susceptible to gauge),
and as 2-dimensional electrodynamicists our deeper interest lies in fact
elsewhere—in the fields Fµ. The forced string can, from this point of view, be

12 Of much lesser consequence is the loss of gauge invariance, in the sense
A −→ Â = A + constant; gauge terms—since “merely” gauge terms (devoid
of physical implication)—are permitted to violate any symmetry principle they
have a mind to.
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thought of as a 3-field system, governed by field equations that can, according
to (12.1) and (16), be notated

∂µFµ = −J (30.1)
Fµ = −∂µA (30.2)

We note that our former Lagrangian can in this notation be described

L = 1
2g
αβFαFβ + JA

but for the purposes now at hand adopt this hybrid construction:

L(F0, F1, A, ∂A) = − 1
2g
αβFαFβ − gαβFα(∂βA) + JA (31)

= − 1
2F0F0 + 1

2F1F1 − F0(∂0A) + F1(∂1A) + JA

The field equations are then three in number:

∂0
∂L

∂(∂0F0)
+ ∂1

∂L

∂(∂1F0)
− ∂L

∂F0
= 0, which gives F0 = −∂0A

∂0
∂L

∂(∂0F1)
+ ∂1

∂L

∂(∂1F1)
− ∂L

∂F1
= 0, which gives F1 = −∂1A

∂0
∂L

∂(∂0A )
+ ∂1

∂L

∂(∂1A )
− ∂L

∂A
= 0, which gives ∂µFµ = −J

The Lagrangian (31) is seen thus to give rise to the complete system of equations
(30)—“Ampere’s Law” (30.1) as well as the definitions (30.2) which render
“Faraday’s Law” (12.2) automatic; (31) provides the 2-dimensional analog of
what in the field-theoretic formulation of Maxwellian electrodynamics is
sometimes called13 the “Schwinger Lagrangian.”

Our excursion into rudimentary field theory has positioned us to view with
new eyes the (longitudinal) vibrations of a string; we find ourselves in position
to say that “the time partial of displacement is very E-like, and the space partial
very B -like.” The expressions that familiarly provide descriptions of energy &
momentum density & flux on a string have acquired the representation(

energy density c ·momentum density
1
c ·energy flux momentum flux

)
=

(
1
2 (E2 + B2) −EB
−EB 1

2 (E2 + B2)

)

and we are brought close to something very like the “mechanical model” of
electromagnetism that for a while figured so prominently in Maxwell’s own
thought.14

13 See A. O. Barut, Electrodynamics and Classical Theory of Fields and
Particles (), p. 103.

14 See, for example, Chapter 7 of C. W. F. Everitt, James Clerk Maxwell:
Physicist & Natural Philosopher ().
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One small point before I take leave of this topic: the methods of classical
field theory, when applied to Maxwellian electrodynamics, tend to veer off track
when they encounter implications of the fact that the 4-potential Aµ is defined
only to within a gauge transformation. The specific form of the field equations
is conditional upon the imposition of a side condition (such, for example, as the
Lorentz gauge condition ∂µA

µ = 0), which is by nature not a field equation but
an arbitrarily imposed constraint. Constraints, when present in field theories,
always call for the introduction of specialized machinery of one description or
another.15 My point is that 2-dimensional electrodynamics is, in this respect,
especially simple; no specialized machinery is called for because the theory
supports no non-trivial analog of a gauge condition.

5. Lorentz covariance. I have many times, in many connections, had occasion
to remark that

The covariance group G of a given system of physical equations
depends critically upon how those equations are conceptualized and/or
notated, and upon how the elements of G are presumed to act.

The history of electrodynamics provides an example of what I mean: Lorentz,
working from (1), was led in  to what we now call the Lorentz group.
About five years later, Bateman & Cunningham—working independently from
a variant of (2)—were led to the conformal group, which contains the Lorentz
group as a subgroup, but contains also some non-linear (“accelerational”)
elements. And in the ’s van Danzig, working from a slight reinterpretation
of (2), was led to a metric-independent electrodynamics which is unrestrictedly
covariant.16

In undertaking to discuss the transformational properties of 2-dimensional
electrodynamics I acquire therefore an obligation to stipulate that I will concern
myself with the theory as described in preceding pages. We will be led to
the Lorentz group, but an alternative formulation lies readily at hand which
would lead to the 2-dimensional conformal group. That remark opens upon a
landscape it might, on some other occasion, be interesting to explore, for the
2-dimensional conformal group is in an important respect exceptional; it lacks
the “crystaline” quality of its N -dimensional siblings (N ≥ 3), and embraces

15 A variety of ingenious special mechanisms have been devised to deal with
the contraint problem as it arises within Maxwellian electrodyamics. Proca, for
example, has described a field system which contains an additional parameter
κ (associated physically with a hypothetical “photon mass”), and in which an
equation of the form ∂µA

µ = 0 has joined the population of field equations. By
design

lim
κ↓0

{
Proca equations

}
= Maxwell equations

For the details, see pp. 89–93 in relativistic classical fields ().
16 For an account of these developments, and references to related literature,

see pp. 179–186 of my classical electrodynamics ().
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the entire “theory of conformal transformations,” as supplied by the theory of
functions of a complex variable.17

Our theory was born of the exterior calculus, and has been developed in
language borrowed from ordinary tensor calculus. Its general covariance would
therefore be assured, save for one detail: we have, since the beginning of §2,
steadfastly insisted that the metric tensor gµν—which we have used only to
set up a correspondence between covariant and contravariant objects (i.e., to
raise/lower indices)—possess the Lorentzian structure

||gµν || =
(

1 0
0 −1

)

But
xµ −→ x̃µ = x̃µ(x)

induces

gµν −→ g̃µν(x̃) = ∂xα

∂x̃µ
∂xβ

∂x̃ν gαβ

�
||g̃µν(x̃)|| = ||∂xα

∂x̃µ ||T||gαβ ||||∂x
β

∂x̃ν || in matrix notation

To insist that

=
(

1 0
0 −1

)
is to impose a set of constraints upon the functions xβ(x̃). If we restrict our
attention to linear coordinate transformations

x̃xx −→ xxx = Lx̃xx (32)

then we have
L

T
(

1 0
0 −1

)
L =

(
1 0
0 −1

)
which is precisely the condition that L be a “Lorentz matrix,” and that (32)
be a Lorentz transformation. We conclude that 2-dimensional electrodynamics
shares the Lorentz covariance of its Maxwellian big sister.

Though not at all unexpected, this result is in one respect a little surprising,
for it appears to contradict the previously noted “string-like” character of the
2-dimensional theory. What I have in mind is this: you and I stand before a
quiescent stretched string. I stimulate the string, and you write something like{(

∂
∂x

)2− 1
u2

(
∂
∂t

)2
}
φ(t, x) = f(t, x)

17 Elaborate discussion of this topic (exclusive of its electrodynamical
application) can be found in transformational physics of waves ().
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to describe its subsequent vibratory motion. We see a second observer O to be
going by with speed v. He also has interest in our string, and—taking

t = ttt

x = xxx + vttt

}
(33)

to describe the (Galilean) relationship between our coordinates and his, finds
that he must write{(

∂
∂xxx

)2 + 2v
u2−v2

∂
∂xxx
∂
∂ttt − 1

u2−v2
(
∂
∂ttt

)2
}
φφφ(ttt, xxx) = fff(ttt, xxx)

to describe the same physics.18 Neither O nor we are disturbed by the fact
that his equation is structurally distinct from ours, for we stand in asymmetric
relationships to the “medium;” we are at rest with respect to the string, but he
is not. Such a rationale would, however, lose its force if he/we were discussing
waves unsupported by a “medium.”19 O and we busy ourselves, and discover20

that for him to achieve{(
∂
∂xxx

)2 − 1
uuu2

(
∂
∂ttt

)2
}
φφφ(ttt, xxx) = fff(ttt, xxx)

he must set uuu = u (call their mutual value c) and, in place of (33), write21

x0 = γ(x̂0 + βx̂1)

x1 = γ(βx̂0 + x̂1)

}
(34)

with β ≡ v/c and γ2 ≡ 1/det
(

1 β
β 1

)
. But equations (34) are just the Lorentz

transformation equations (32)—spelled out now in kinematic detail. These
remarks put us in position to make the following observation:

2-dimensional electrodynamics is “string-like” except in one detail: the
potential A is, since susceptible to gauge adjustment, not physical, and
therefore cannot be assigned the status of a “medium.” The Lorentz
covariance of the theory is enforced by this circumstance.

In Maxwellian electrodynamics the fields E and B acquire the strange
transformation properties first described by Einstein () because they are
components of a tensor Fµν of 2nd rank. Their 2-dimensional counterparts are,

18 Here φφφ(ttt, xxx) ≡ φ(ttt, xxx + vttt), and fff(ttt, xxx) is defined similarly.
19 It took physicists a long time to appreciate that the real world—in the

instance originally of electromagnetic radiation—gives meaning to such a
seemingly paradoxical notion.

20 For the detailed argument, see the seminar notes “How Einstein might
have achieved relativity already in ”, which appear as an introduction to
the material cited in footnote 16.

21 I revert here to our former notation, writing x0 = ct, x1 = x, x̂0 = c ttt and
x̂1 = xxx.



Lorentz covariance 21

however, components of a tensor Fµ of only 1st rank; they transform, that is
to say, like coordinates:

x̃xx −→ xxx = Lx̃xx induces F̃ −→ F = LF̃ (35)

where F ≡
(
F 0

F 1

)
=

(
+E
−B

)
. It follows that

FαFα = −GαGα = E2 −B2

FαGα = 0

}
are Lorentz invariant (36)

Here G ≡
(
G0
G1

)
=

(−B
−E

)
refers to the “dual” field Gµ ≡ εµαF

α, which was first
encountered at (10.2).22

At source-free points, A = (∂0 + ∂1)(∂0 − ∂1)A = 0 entails

either (∂0 + ∂1)A = 0 or (∂0 − ∂1)A = 0 ; i. e., B = ±E (37.1)

It follows in either case that

E2 −B2 = 0 at source-free points (37.2)

We were prepared, in view of (35), to classify fields Fµ as

“time-like”
“light-like”

“space-like”


 according as E2 −B2 is




> 0
= 0
< 0

but see now that—with a literalness to which we are unaccustomed—every
such field is “light-like” at source-free points. Equations (37) are reminiscent of
statements encountered in connection with the Maxwellian theory of plane
waves: E⊥B and have (in my units not only the same physical dimension
but also) the same magnitude.23 But nothing comparable to a “plane wave
assumption” is presently in force.

That stress-energy Sµν is—in the 2-dimensional theory as in Maxwellian
theory (as, indeed, it is also in the 2p -dimensional theory)—a doubly-indexed
object comes as no surprise, since Noether’s theorem supplies one µ-indexed
object per free parameter, and the spacetime translations supply

number of free parameters = dimension of spacetime

Nor is it surprising that Sµν transforms tensorially. My simple point, in a
nutshell, is this: the rank (whence also the transformation properties) of the
electromagnetic field F are dimension-dependent, but those of stress-energy are
not; they are, that is to say, universal .

22 The Maxwellian counterparts of (36) can be seen below at (48).
23 See p. 342 in the text just cited.
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Adopting now a slight (first index up) variant

S ≡ ||Sµν || =
(

1
2 (E2 + B2) EB
−EB − 1

2 (E2 + B2)

)
(38)

of the notation introduced at (19) in §3, we observe that

det(S− λI) = λ2 − λ · tr S + 1
2

[
(tr S)2 − tr S

2
]

(39)

But the traces of all powers of S are manifestly Lorentz invariant; specifically24

tr S = Sαα = 0

tr S
2 = SαβS

β
α = 1

2 (FαFα)2 = 1
2 (E2 −B2)2

}
(40)

The characteristic equation now becomes

λ2 − σ2 = 0 with σ ≡ 1
2 (E2 −B2) (41)

=
√
−detS

so by the Cayley-Hamilton theorem

S
2 − σ2

I = O (42)

From this it follows readily that the traces of higher powers of S supply no new
invariants:

tr S
2n+1 = 0

tr S
2n = 2σ2n

: n = 0, 1, 2, . . . (43)

The eigenvalues λ = ±σ are Lorentz invariant, and vanish (with the consequence
that S becomes singular) at source-free points.

Looking to the factors of (42), we are led—subject to the proviso that
σ �= 0 —to introduce

P0 ≡ + 1
2σ

(
S + σI

)
and P1 ≡ − 1

2σ

(
S− σI

)
(44)

and to notice that these comprise a complementary set of orthogonal projection
operators

P0 + P1 = I, P0 · P1 = O, P0 · P0 = P0 and P1 · P1 = P1 (45)

in terms of which we achieve this “spectral representation” of S:

S = λ0P0 + λ1P1 (46)

24 Though it is easy enough to work directly from (38), it is more elegant—
and marginally more informative—to work from (25) with the aid of (36).
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Here λ0 ≡ +σ and λ1 ≡ −σ; motivation for the design of my subscripted
notation will soon be evident.

The theory of n-dimensional projection matrices supplies the information
that det

(
P − λI

)
= (λ − 1)dλn−d, where d is the dimension of the subspace

upon which P projects, and n− d is the dimension of the subspace annhilated
by P. In the case at hand we have

det
(
P0 − λI

)
= det

({
1
2σ S + 1

2 I
}
− λI

)
= 1

4σ2 det
(
S− 2σ(λ− 1

2 )I
)

= 1
4σ2

{[
2σ(λ− 1

2 )
]2 − σ2

}
by (41)

= (λ− 1) · λ
det

(
P1 − λI

)
= λ · (λ− 1) by a similar argument

Evidently P0 and P1 project onto an orthogonal pair of vectors. The implication
is that if J(x) �= 0 (i.e., if x is not a source-free point) then written into the
structure of the local stress-energy tensor Sµν(x) is an “eigenbasis,” in terms
of which it becomes possible to write

xxx = x̃0eee0 + x̃1eee1 (47.1)

where
P0eee0 = eee0 and P1eee1 = eee1 (47.2)

These statements are, I emphasize, local ; their detailed meaning varies from
sourcey point to sourcey point.

The results developed above are so striking, and—algebraically natural
though they are—touch upon aspects of electrodynamics that are so unfamiliar,
as to inspire the following commentary; we proceed in Lorentzian analogy with
the familiar fact that “every real symmetric matrix can be diagonalized by
rotation.” In 2-dimensional spacetime the most general (proper) Lorentz matrix
L = ||Lµν || can be described25

L = exp
{
ψ

(
0 1
1 0

)}
=

(
coshψ sinhψ
sinhψ coshψ

)

where β = tanhψ provides the kinematic interpretation of the parameter ψ
(which is sometimes called the “rapidity”). If Sµν is symmetric then S ≡ ||Sµν ||
(note that I have, for purposes of the present argument, again lowered the
leading index) has necessarily the form S =

(
a b
b c

)
, and to achieve tracelessness

(in the sense Sαα = 0) we must set c = a. Lorentz transformation sends
Sµν −→ S̃µν = LαµL

β
νSαβ , which in matrix notation reads

25 See pp. 195–197 of the class notes cited in footnote 22.
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S −→ S̃ = L
T
S L

=
(

coshψ sinhψ
sinhψ coshψ

) (
a b
b a

) (
coshψ sinhψ
sinhψ coshψ

)

=
(
a cosh 2ψ + b sinh 2ψ b cosh 2ψ + a sinh 2ψ
b cosh 2ψ + a sinh 2ψ a cosh 2ψ + b sinh 2ψ

)
↓

=
(
a sech 2ψ 0

0 a sech 2ψ

)
if tanh 2ψ = −b/a

But −1 < tanh 2ψ < +1. The implication is that S can be Lorentz transformed
to diagonal form if and only if 0 ≤ (b/a)2 < 1. To discover the transformation
that does the job, we use

tanh 2ψ =
2 tanhψ

1 + tanh2 ψ
=

2β
1 + β2

= −b/a

to obtain

β = −(a/b)
[
1±

√
1− (b/a)2

]
= −(a/b)

[
1±
√
a2 − b2

a

]

which in physical variables (i.e., when we take S to have the specific meaning
stated at (38)) becomes

β = −E2 + B2

2EB

[
1± E2 −B2

E2 + B2

]

=
{
−B/E
−E/B

: take whichever conforms to − 1 < β < +1

Diagonalization—when it can be achieved—accomplishes this result:26

S̃ =
(
σ 0
0 σ

)
where, as before, σ ≡ 1

2 (E2 −B2)

But, on the ground that β = ±1 is “unphysical,” we conclude that in fact
diagonalization of the stress-energy is not possible at source-free points. This is
a gratifying result, for in the contrary case we would in effect have transformed
the stress-energy tensor to extinction. And it is entirely consistent with our
discovery that the projectors P0 and P1 exist if and only if J �= 0. To establish
explicit contact with material developed in the preceding paragraph we have
once again to raise the leading index, writing

||S̃µν || =
(
σ 0
0 −σ

)

26 Use sech 2ψ =
√

1− tanh2 2ψ.
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The definitions (44) then give

P̃0 =
(

1 0
0 0

)
and P̃1 =

(
0 0
0 1

)

The Lorentz transformation that serves to diagonalize the stress-energy tensor
acquires now a second interpretation: it is the transformation that sends(

1
0

)
−→ L

(
1
0

)
= eee0 and

(
0
1

)
−→ L

(
0
1

)
= eee1

The L in question can be described

L =
1√

1− tanh2ψ

(
1 tanhψ

tanhψ 1

)

tanhψ ≡ β =



−BE if E2 > B2, i.e., if σ > 0

−EB if E2 < B2, i.e., if σ < 0

It is no surprise that with β (and the associated γ = 1/
√

1− β2 ) thus defined
we have

eee0 = γ

(
1
β

)
and eee1 = γ

(
β
1

)
Nor is it surprising that we have (in the Lorentzian sense)

(eee0, eee0) = +1, (eee1, eee1) = −1 and (eee0, eee1) = 0

It is, however, gratifying (if not really surprising) that P0 and P1 can be rendered
in terms of such β and γ: inserting (38) into (44) we find

P0 =
1

E2 −B2

(
EE EB
−BE −BB

)
and P1 =

1
B2 − E2

(
BB BE
−EB −EE

)

which display a pretty symmetry. If E dominates B then we have

P0 = γ2

(
1 −β
β −β2

)
and P1 = γ2

(
−β2 β
−β 1

)

while if B dominates E then the descriptions of P0 and P1 are reversed. In the
former case we are gratified to compute

P0eee0 = eee0, P0eee1 = 000, P1eee0 = 000 and P1eee1 = eee1

while in the latter case we find that the roles of eee0 and eee1 are reversed.

To demonstrate that the previous discussion is in no essential respect
special to the 2-dimensional case, I conduct my reader now along the first
quarter mile of the trail that leads through the corresponding Maxwellian
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landscape—seldom traveled though the trail happens to be. For every 4 × 4
matrix one has27

det(S− λI) = λ4 −∆1λ
3 + 1

2!∆2λ
2 − 1

3!∆3λ + 1
4!∆4

where
∆1 ≡ T1

∆2 ≡ T 2
1 − T2

∆3 ≡ T 3
1 − 3T1T2 + 2T3

∆4 ≡ T 4
1 − 6T 2

1 T2 + 8T1T3 + 3T 2
2 − 6T4 = 4! det S

and Tk ≡ tr S
k. Taking S ≡ ||Sµν || to be, in particular, the Maxwellian

stress-energy tensor (18), one can, with moderate effort,28 establish (compare
(40) & (43)) these trace relations:

T1 = 0

T2 = 4τ2

T3 = 0

T4 = 4τ4

where τ2 ≡ α2 + β2 with (compare (36))

α ≡ 1
4F
α
βF
β
α = − 1

4G
α
βG
β
α = 1

2 (E2 −B2)

β ≡ 1
4F
α
βG
β
α = + 1

4G
α
βF
β
α = E···B

}
(48)

Clearly, α and β are Lorentz invariant.29 So also, therefore, are all the T ’s,
whence all the ∆’s, whence all the eigenvalues of S. Major simplifications result
from the fact that the T ’s of odd order vanish; we have (compare (39))

det(S− λI) = λ4 − 1
2T2λ

2 +
[
1
8T

2
2 − 1

4T4

]
= λ2 − 2τ2λ2 + τ4

=
(
λ2 − τ2

)2

By the Cayley-Hamilton theorem
(

S
2−τ2

I
)2 = O, but in fact one can establish

the stronger condition (compare (42))

S
2 − τ2

I = O

One can proceed, with familiar consequences, to the construction of projection

27 See “Some applications of an elegant formula due to V. F. Ivanoff” in
collected seminars (–).

28 All the details are spelled out on pp. 321 et seq in electrodynamics
().

29 It is interesting that while the 4-dimensional theory supplies two such
invariants (and the 2-dimensional theory only one), they enter into S-theory
only in combination. Elsewhere in Maxwellian electrodynamics they do,
however, make separate appearances. We expect the 2p-dimensional theory
to supply a total of p such invariants.
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operators P0 ≡ + 1
2τ

(
S + τI

)
and P1 ≡ − 1

2τ

(
S− τI

)
, but I shall not; my

main point is, I think, established: fine details with the 2-dimensional theory
are simpler, and computation correspondingly easier, but to a remarkable degree
the structural essentials of the 2-dimensional theory accurately anticipate and
reflect the structural essentials of Maxwellian electrodynamics.

6. Conservation laws for the free field. We have discussed at length, from several
points of view, the Sµν that enters into this ν-indexed pair of local conservation
laws:

∂µS
µν = 0 in the absence of sources

My objective here will be to provide unified discussion of a population of similar
statements—each rooted in a symmetry of the of the field equations, and each
providing 2-dimensional expression of a property already known to attach to
the Maxwellian free field. Our principal analytical tool was provided by Emmy
Noether (), and I digress now to review the practical essentials of her
accomplishment.30

Given any field system ϕ ≡ {ϕα(x) : α = 1, 2, . . . , N} and an associated
Lagrangian density L(ϕ, ∂ϕ, x), Noether concerns herself with the first-order
response δωSR[ϕdynamical] of the “dynamical action functional”

SR[ϕdynamical] ≡ 1
c

∫
R

L(ϕ, ∂ϕ, x) dx0dx1

ϕ any solution of the field equations
R any “bubble” in (2-dimensional) spacetime

to a δω ≡ {δωr : r = 1, 2, . . . , ρ }-parameterized infinitesimial map. Such a map
is assumed, in the general case, to entail simultaneous

relocation in spacetime

xµ �−→ Xµ(x; δω) = xµ+δωx
µ

δωx
µ =

ρ∑
r=1

Xµr (x)δωr

compound adjustment of the field functions 31

ϕα(x) �−→ φα(X; δω) = ϕα(x)+δωϕα(x)

δωϕα(x) =
ρ∑
r=1

Φαr(ϕ)δωr

30 For more elaborate discussion and all the missing details, see (for example)
Chapter I of my analytical dynamics of fields ().

31 To make clear the burden of the adjective “compound” one writes

δωϕα(x) = ϕα,µδωx
µ +

{
Φαr − ϕα,µX

µ
r

}
δωr

= contribution from variation of argument
+ contribution from variation of functional form
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and gauge adjustment of the lagrangian density

L(ϕ, ∂ϕ, x) �−→ L(ϕ, ∂ϕ, x) +
ρ∑
r=1

∂µΛµr (ϕ, x)δωr

To particularize such a map one assigns particular meaning to the functions

Xµr (x), Φαr(ϕ) and Λµr (ϕ, x)

Noether’s accomplishment was to show that

δωSR[ϕdynamical] = 0 (all R) ⇐⇒ ∂µJ
µ
r = 0 : r = 1, 2, . . . , ρ

where
Jµr = Jµr (ϕ, ∂ϕ, x)

≡ ∂L

∂ϕα,µ

{
Φαr − ϕα,σX

σ
r

}
+ LXµr + Λµr (49)

So much for general background. . . in connection with which it is well to
take note of several points. Energy, momentum, angular momentum, etc. are
eminently useful constructs, even in contexts in which they happen not to be
conserved. Similarly, a “Noetherean current” Jµ lays claim to our interest in
direct proportion to the strength of our interest in the underlying symmetry—
even when it happens not to be the case that ∂µJµ = 0. Indeed, in such cases it
often proves instructive to ask “How did the anticipated symmetry come to be
broken?” It is important to notice also that, while Noether’s line of argument
may recommend a Jµ to our attention, the associated conservation law holds
by virtue of the equations of motion, of which it is a corollary .

What do the methods outlined above have to teach us about the dynamics
of free fields in 2-dimensional electromagnetism? We look first, for mainly
methodological reasons, to the familiar translation map, and confront at once
this question: Do we imagine ourselves to be discussing a one-field theory,
governed by

L(∂A) ≡ 1
2g
αβ(∂αA)(∂βA) (50.1)

= 1
2

{
(∂0A)2 − (∂1A)2

}
or a three-field theory, governed by

L(F, ∂A) = − 1
2g
αβFαFβ − gαβFα(∂βA) (50.2)

= − 1
2F0F0 + 1

2F1F1 − F0(∂0A) + F1(∂1A)

Let us, for simplicity, select the former option. To speak of an (infinitesimial)
“translation in spacetime” is to have then in mind the 2-parameter map32

xµ �−→ xµ + δωµ

A �−→ A

L(∂A) �−→ L(∂A)

32 Note that the parameters are now stripped of their generic index r and
assigned identifiers ν more natural to the instance; this is typical. Note also
that, since there is only one field, the field identifier α can be omitted.
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The associated structure functions are therefore

Xµν (x) = δµν , Φν(A) = 0 and Λµν (A, x) = 0

which upon introduction into (49) give

Jµν = − ∂L

∂A,µ
A,σδ

σ
ν + Lδµν

= −gµβA,βA,ν + 1
2g
αβA,αA,βδ

µ
ν

↓
Jµν = −FµFν + 1

2 (FαFα) · gµν by Fµ = −∂µA
= −Sµν as defined at (21)

The translation map has recommended Sµν to our attention, but to establish
∂µSµν = 0 we must appeal to the field equations. And indeed, we have

∂µJ
µ
ν = − A ·A,ν −A,β∂

βA,ν + A,β∂
βA,ν = 0 by A = 0

Had we elected to work alternatively from (50.2) we would have had to adjust
slightly our conception of the map

xµ �−→ xµ + δωµ

A �−→ A

Fµ �−→ Fµ

L(∂A) �−→ L(∂A)

but would have been led by a variant of the same argument to an identical
result. All of which is old news, but gratifying. Venturing now into a fresh
pasture. . .

Free-field electrodynamics provides no “natural length.” We expect the
theory therefore to display scale invariance. To describe a finite dilation we
write

xµ �−→ eωxµ

A �−→ ekωA : k an adjustable constant

and are led to the structure functions

Xµ(x) = xµ, Φ(A) = kA and Λµ(A, x) = 0

Noether directs our attention therefore to

Dµ ≡ ∂L

∂A,µ

{
kA−A,σx

σ
}

+ Lxµ

= kA∂µA− Sµνx
ν (51)
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Bringing A = 0, ∂µSµν = 0 and Sµµ to

∂µD
µ = kA · A + k (∂µA)(∂µA)︸ ︷︷ ︸−(∂µSµν)xν − Sµµ

= FµFµ = E2 −B2 = 0 for free fields

we discover, rather to our surprise, that

∂µD
µ = 0 irrespective of the value assigned to k

We have come away with two free-field conservation laws for the price of one:

∂µ(A∂µA) = 0 and ∂µ(Sµνxν) = 0 (52)

—both of which are transparently correct. This development is, as I have
remarked, “surprising” because the dilational invariance of

SR[A] = 1
c

∫
R

1
2g
αβ(∂αA)(∂βA) dx0dx1

clearly entails k = 0. And because the dilational symmetry of the Maxwellian
free field supplies only the latter of the preceding conservation laws.33

In 4-dimensional spacetime the most general (proper) Lorentz matrix can
be described

L = exp




0 ψ1 ψ2 ψ3

ψ1 0 ϑ3 −ϑ2

ψ2 −ϑ3 0 ϑ1

ψ3 ϑ2 −ϑ1 0




and is evidently a 6-parameter object; the ϑ’s generate rotations and give rise
via Noether’s theorem to angular momentum, while the ψ’s generate “boosts”
and give rise to three constructs which—though their relationship to angular
momentum is as close as that of E to B—remain, so far as I am aware, nameless.
The situation in 2-dimensional spacetime is much simpler; we have

L = exp
(

0 ψ
ψ 0

)
Rotations and angular momentum have been rendered moot; the boost L

contains only a single parameter, and supports only a single conservation law.
Since in 2-dimensional electrodynamics the potential A boosts as a scalar field,
we have only to write

x0 �−→ x0 + x1δψ = x0 + g0αεαβx
β · δψ

x1 �−→ x1 + x0δψ = x1 + g1αεαβx
β · δψ

A �−→ A

33 See B. F. Plybon, “Observations on the Bessel-Hagen conservations laws
for electromagnetic fields,” AJP 42, 998 (1974).
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Therefore

Xµ(x) = gµαεαβx
β , Φ(A) = 0 and Λµ(A, x) = 0

and we are led (after a bit of calculation and an overall sign reversal) from (49)
to the Noetherean current

Kµ ≡ Sµαεαβx
β (53)

Immediately

∂µK
µ = (∂µSµα)εαβx

β + Sµαεαµ = 0 by the symmetry of Sµν

Because (53) has such a distinguished pedigree—it is a child of Noether fathered
by Lorentz, an expression of the Lorentz covariance of our theory—I linger in
an effort to clarify (or at least to make more memorably vivid) its meaning.
The equation ∂µK

µ can be written

∂
∂tK + ∂

∂x (associated flux) = 0

where
K = K0 = S00x− S01ct

associated flux = cK1

But
S00 = energy density (call it E ≡ Mc2)

S01 = S10 = c ·momentum density (call it ℘)

so we have
K = Ex− c2℘t = c2(Mx− ℘t) (54)

This construction recalls to mind not only the KKK = c2(Mxxx − ℘℘℘t) that arises
similarly from Maxwellian electrodynamics, but also the construction34

ggg ≡ mxxx− ppp t

that by its conservation (ġgg = 000) expresses the Galilean covariance of the free
particle system L = 1

2mẋxx · ẋxx. There are, however, some notable distinctions to
be made: in the classical mechanics of a non-relativistic particle, ggg and angular
momentum LLL are transformation-theoretically disjoint and distinct, whereas in
relativistic theory the Lorentz transform properties of KKK and LLL are intertwined,
and in fact mimic those of EEE and BBB. And in 2-dimensional spacetime K is, as
previously remarked, accidentally deprived of the companionship of a sibling.

The 2-dimensional theory supports, as we have seen, only this relatively
impoverished analog

A −−−−−→
gauge

A + constant

34 See classical mechanics (), p. 170.
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of the Maxwellian gauge transformation Aµ −→ Aµ+∂µϕ. From the associated
infinitesimal map A �−→ A + δω we are led to write

Xµ(x) = 0, Φ(A) = 1 and Λµ(A, x) = 0

The associated Noetherean current

∂L

∂A,µ
= ∂µA

is (by (26), and to within a sign) just the field Fµ itself. That

∂µF
µ = − A = 0 in the absence of sources

is hardly news, but it is of some interest that the preceding equations can
be considered to have been forced by the gauge invariance of the free action
functional.

The Maxwellian free field is (see again the beginning of §5) actually
conformally covariant, and the conformal group contains elements additional
to the Lorentz transformations and dilations. It contains, in particular, the
subgroup of so-called “Möbius transformations,” which come in as many flavors
as do the translations. When the dimension of spacetime passes through the
value n = 2 the conformal group acquires—abruptly and exceptionally—a much
more fluid structure than it possesses at other values of n, but within that
fluid richness can be found the 2-dimensional shadow of the n-dimensional
conformal groups (n = 3, 4, . . .). The structure of that shadow (and of the
general situation) is suggested by the following scheme:


0 translation translation dilation

0 boost Möbius
0 Möbius

0




That said, and in the absence of all supporting detail, I can report that the
Möbius map gives rise to this ν-indexed set of currents:

Mµν ≡ Sµαx
αxν − 1

2S
µνxαxα (55)

One can, in any event, verify readily enough that

∂µM
µν = 0

In the notations developed in connection with the interpretation of K we have

M0 ≡ 1
c2M

00 ≡ Möbius density of the 0th kind

= 1
2

(
ct
x

)T (
M −℘/c
−℘/c M

) (
ct
x

)
(56.1)

M1 ≡ 1
c2M

01 ≡ Möbius density of the 1st kind

= 1
2

(
ct
x

)T (
−℘/c M

M −℘/c

) (
ct
x

)
(56.2)
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but I cannot claim that these (of which we will later have practical need) speak
powerfully to my own intuition. It would, I suspect, prove easier to think the
matter through in two dimensions than in four, if one had motivation to do
so. And it is, in any event, interesting that even in these exotic respects the
2-dimensional theory exactly mimics Maxwellian electrodynamics.

In  D. M. Lipkin35 surprised the world with his observation that if

Z0 ≡ E · curlE + B · curlB
ZZZ ≡ E× ∂0E + B× ∂0B

}
(57.1)

then ∂µZ
µ = 0 in the absence of sources. When he asked himself “How does

‘zilch’ transform?” Lipkin was led to the discovery of nine yet additional new
free-field conservation laws, for a total of ten. It was promptly pointed out by
others that Lipkin’s conservation laws can be notated

∂µV
µαβ = 0

V µαβ ≡ (∂µGαλ)Fλβ − (∂µFαλ)Gλβ

= V µβα

↓
V µ00 = Zµ = −(E · ∂µB−B · ∂µE) (57.2)

and that they are in fact merely the simplest instances of an infinite set of
free-field conservation laws—all of which involved field derivatives (of ascending
order), and none of which could be understood to derive via any straightforward
application of Noether’s theorem from a symmetry principle. Getting from
(57.1) to (57.2) poses an interesting challenge (see the class notes cited above for
indication of how it is done), but upon arrival at (57.2) it becomes instantly clear
that and how “zilch” and its companions are to be imported into 2-dimensional
electrodynamics; introducing

Zµ ≡ −(E · ∂µB −B · ∂µE)

we have

∂µZ
µ = 0 by E = B = 0; the other two terms cancel

This observation opens a magic door; we are inspired to introduce

Y µ ≡ 1
2 (E · ∂µE + B · ∂µB)

and to observe that
∂µY

µ = 0

35 “Existence of a new conservation law in electromagnetic theory,” J. Math.
Phys 5, 696 (1964). For references to the flurry of activity that quickly followed,
see pp.329–332 in classical electrodynamics ().
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by E = B = 0 and the “cross cancellations” made possible by the field
equations (13)

∂0B = ∂1E and ∂1B = ∂0E in the absence of sources

Differentiation of (37.2)—i.e., of

1
2 (E2 −B2) = 0 in the absence of sources

—supplies on the other hand the information that

E · ∂µE = B · ∂µB

Evidently Y µ = 1
2 (Uµ + V µ) = Uµ = V µ, where

Uµ ≡ E · ∂µE and V µ ≡ B · ∂µB

are (in the absence of sources) numerically identical and individually conserved:

Uµ = V µ and ∂µU
µ = ∂µV

µ = 0

Returning in the light of this development to Zµ, we are surprised to discover
that in fact

E · ∂µB and B · ∂µE are individually conserved

For we have

∂µ(E · ∂µB) = ∂µE · ∂µB by B = 0
= ∂µ∂0A · ∂µ∂1A

= A00A01 −A10A11

= A00 (A01 −A10)︸ ︷︷ ︸ by A = 0

0
∂µ(B · ∂µE) = 0 by an identical argument

Our theory supplies, therefore, a quartet of zilch-like expressions

Zµαβ ≡ Fα∂µFβ ←→ Z
µ ≡

(
+E∂µE +E∂µB
−B∂µE −B∂µB

)

and has led us to the conclusions that

∂µZ
µ = O and tr Z = 0

Pauli matrices spring to mind, but it seems pointless to pursue that remark
in the absence of any intended application. Instead, I look to the curious
circumstance that comes to light when one undertakes to confirm by direct
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argument that ∂µUµ = 0. We come immediately upon the (nonlinear) “eikonal
equation”36

∂µE · ∂µE = (E0)2 − (E1)2 = (E0 + E1)(E0 − E1) = 0

which in the 2-dimensional case entails

E0

E1
=

E1

E0
= ±1

Hitting the eikonal equation with ∂0 (alternatively with ∂1) we obtain

E01 =
E0

E1
E00 and E10 =

E1

E0
E11

It follows from these remarks that E00 = E11; in the 2-dimensional case

E satisfies the eikonal equation =⇒ E satisfies the wave equation

and ∂µU
µ = 0 asserts simply/economically that E (in the absence of sources)

simultaneously satisfies both equations. Similar remarks pertain, of course, to B.
To summarize, zilch finds a natural accommodation within the 2-dimensional
formalism, and its inclusion is in fact instructive. But knowledge of the
conservation of zilch—here as in Maxwellian theory (but here much more easily)
—is gained not be appeal to Noether’s theorem but “by inspection.” Zilch
is (with its differentiated fields) structurally unlike the conserved constructs
encountered earlier in this discussion, and its conservation has been attributed
to no symmetry; it is difficult to imagine structure functions which, upon
insertion into (49), would give rise to zilch. Maybe one should look to this
circumstance for clues as to how standard Noetherean analysis might usefully
be enlarged upon.

Each of the conservation laws discussed above has the form ∂µJ
µ = 0.

Each provides covariant local espression of a global statement of the type

d
dtJ = 0 with J ≡

∫ +∞

−∞
J0 dx

I look to some concatenated global implications of some of the local results now
in hand.37 The stress energy tensor (translational invariance) supplies

36 For the purposes of this discussion I allow myself to write Eµ for ∂µE and
Bµ for ∂µB when no confusion can result.

37 For parallel Maxwellian remarks, see classical electrodynamics
(), pp. 324–329. My ultimate source has been some unpublished material by
Julian Schwinger; in the late ’s Schwinger prepared the draft of a projected
electrodynamics text, which was sent to me for review. The work was highly
original in concept—the mature work of a master—and we were deprived of a
valuable resource when (not, I hope, as a result of my comments!) Schwinger
decided not to pursue the project.
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(conserved total energy) =
∫

(energy density) dx

≡Mc2 : defines the “total mass” of the field

(conserved total momentum) =
∫

(momentum density) dx

≡ P

From ∂µK
µ = 0 (Lorentz covariance) we have

Pt−
∫

(mass density)x dx︸ ︷︷ ︸ = constant of the motion

≡MX(t) : defines “center of mass” of the field

from which it follows that

d
dtX = P/M : the center of mass moves uniformly

The definition of “center of mass” conflates information supplied by the 0th and
1st moments of the mass (energy) distribution. In the mechanics of distributed
systems (rigid bodies) importance attaches also to the 2nd moments (i.e., to
the “moment of inertia” tensor). It is to Schwinger that I owe the realization
that valuable information is supplied also by the 2nd moment structure of the
electromagnetic field. Such information can be obtained from the conservation
laws

∂µM
µν = 0

Mµν ≡ Sµαx
αxν − 1

2S
µνxαxα

which Schwinger was content simply to pluck from his hat, but which we know
reflect the Möbius invariance of the field equations.38 Availing ourselves of a
notational device borrowed from probability theory

〈x0〉 ≡ 1
M

∫
Mx0 dx = 1

〈x1〉 ≡ 1
M

∫
Mx1 dx = X = Xinitial + (P/M)t

〈x2〉 ≡ 1
M

∫
Mx2 dx

we have interest in the “mass-localization parameter”

σ2 ≡
〈
[x− 〈x〉]2

〉
=

{
〈x2〉 − 〈x〉2

}
(58)

and notice it to be (by (56.1)) an implication of ∂µMµ0 = 0 that

38 They derive, that is to say, from the conformal symmetry of the theory—
from the circumstance that we are concerned with the classical limit of a theory
of massless vector bosons (photons).
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M0 dx = constant of the motion

= 1
2

{
Mc2t2 − 2t

∫
x℘ dx + M〈x2〉

}
= 1

2M〈x
2〉initial

So we have
〈x2〉 = 2t

M

∫
x℘ dx− c2t2 + 〈x2〉initial

To get a handle on the
∫
x℘dx-term (which is proportional to the first moment

of the momentum distribution) Schwinger observes that by trivial implication
of energy conservation ∂µS

µ0 = 0 one has

(xαxα) · ∂µSµ0 = ∂µ(xαxα · Sµ0)− 2Sµ0xµ = 0
↓

1
c
∂
∂t

[
(c2t2 − x2)M

]
+ ∂
∂x

[
(c2t2 − x2) 1

c℘
]
− 2

[
Mct− 1

c℘x
]

= 0

which from our point of view is simply a corollary of ∂µMµ0 = 0. In any event,
upon integrating over space (and abandoning the “surface term” that results
from

∫ +∞
−∞

∂
∂x [etc.] dx) we obtain

2
{
Mc2t−

∫
x℘ dx

}
= M d

dt

[
c2t2 − 〈x2〉

]
With Schwinger we observe that {etc.} is in fact, by the following argument, a
constant of the motion:

d
dt{etc.} = Mc2 −

∫
x ∂∂t (momentum density) dx

= Mc2 +
∫

x ∂∂x (momentum flux)︸ ︷︷ ︸ dx

= energy density Mc2

= Mc2 −
∫

Mc2 dx after integrating by parts

= 0

We find ourselves in position now to write∫
x℘ dx = A + Mc2t : serves to define the “action” constant A

〈x2〉 = c2t2 + 2(A/M)t + 〈x2〉initial

whence

σ2 =
[
c2t2 + 2(A/M)t + 〈x2〉initial

]
−

[
(P/M)t + 〈x1〉initial

]2
=

[
1− (P/Mc)2

]︸ ︷︷ ︸ ·(ct)2 + 2
[
(A− PX0)/Mc

]︸ ︷︷ ︸ ·(ct) + σ2
0

a b
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Necessarily σ2(t) ≥ 0 (all t); a graph of σ2 vs. t has the form of an upturned
parabola with imaginary roots, which entails a ≥ 0 and 0 ≤ b2 ≤ aσ2

0 . Following
again in (2-dimensional analogs of) the footsteps of Schwinger, we look in
particular to implications of the condition a = 0; then (Mc)2 = P 2 or again

total energy = c · |(total momentum)| (59)

which looks very “photonic.” Moreover, a = 0⇒ b = 0, which can be expressed∫
E dx ·

∫
x℘ dx =

∫
xE dx ·

∫
℘ dx (60)

I conclude with discussion of how—in more directly physical terms—it comes
about that (59) gives rise to the “cross moment condition” (60). We have, on
the one hand,

total energy = c · |
∫

℘ dx|

≤ c ·
∫
|℘| dx : equality entails ℘ = |℘| (all x)

But on the other hand (EB)2 =
[
E2+B2

2

]2 − [
E2−B2

2

]2 ≤ [
E2+B2

2

]2 gives

≥
∫
|EB| dx : equality entails E2 = B2 (all x)

= c ·
∫
|℘| dx

Since the inequalities point both ways, we conclude that (59) comes about if
and only if it is—at all spacetime points—simultaneously the case that E2 = B2

and that E and B have opposite signs.39 In short: the “photonic” condition

(59) entails E = −B at all spacetime points

But then
energy density = c · (momentum density) = E2 (61)

from which the “cross moment condition” (60) follows trivially. We note that
∂µM

µ1 = 0 remained unexploited in this discussion; it would presumably come
into play if we undertook to describe (not the localization of mass/energy but)
the “localization of field momentum.” In the photonic case we would expect to
come out at the same place.

7. Dimensional considerations. It is not at all surprising that structural aspects
of 2-dimensional electrodynamics are to some extent prefigured by dimensional
necessity; that in some respects the theory mimics—but in other respects

39 This sharpens the condition B = ±E obtained at (37). In Maxwellian
theory the corresponding conclusion reads E2 = B2 and E ⊥ B.
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departs markedly from—the pattern established by its Maxwellian model. My
intent here is to survey the simple facts of the matter.

For Lagrangian field theories inscribed on n-space one has

S =
∫

L dt with L =
∫
· · ·

∫
L dx1 · · · dxn

↓
= 1
c

∫
· · ·

∫
L dx0dx1 · · · dxn in relativistic cases

In all cases

[S ] = action (62)
[L] = energy density = energy/(length)n (63)

↓
= force : n = 1

In theories that contemplate the existence of structureless point “charges” which
in the static case interact e ↔ e by a force that falls off “geometrically” one
expects to encounter equations of the form

F = e2/rn−1 = eE

Then

[e2] = (force)(length)n−1 = (energy)(length)n−2 (64)
↓ = (energy density)(length)2n−2

= force : n = 1 (no “geometrical fall-off” possible)
[E2] = force/(length)n−1 = energy/(length)n

↓ = energy density (65)
= force : n = 1

In all cases “charge density” and “current density” stand in the relationship

[charge density] = [(current density)/c ] (66)

Moreover charge density =
√

(energy density)/(length)2 (67)
= [∂E/∂x]

holds in all cases. Upon the introduction of potentials A by equations of the
form E = ∂A one obtains in all cases (i.e., for all values of n)

[A ] =
√

(energy density)(length)2

= (energy density)/(charge density)
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“Charged mass points,” when introduced into such a relativistic classical
setting, carry with them a

natural length =
[
e2/mc2

] 1
n−2 =




e2/mc2 : n = 3
undefined : n = 2
mc2/e2 : n = 1

(68)

We do not expect charged particles to be massless, nor do we expect charge to
enter in any way into the free field equations; it is, therefore, probably frivilous
to observe that [e2/E2] = (length)2(n−1), and meaningless to point out that such
a “natural length”—which can, by the way, be assigned no “natural value”—is
(exceptionally) not available to the case n = 1. It is, in all events (which is
to say: for all values of n), from the absence of a natural length that the free
field acquires its dilational invariance, and the presence of coupling to massive
particles that serves to destroy that symmetry.

Other possibilities become available to the quantum theory of such a
system. We find that

[α ≡ e2/�c ] = (length)n−3

is dimensionless in the physical case n = 3, but in other cases supplies

natural length =
[
e2/�c

] 1
n−3

↓
=

√
�c/e2 : n = 1 (vanishes as � ↓ 0) (69)

In the absence of sources it would, however, be difficult to justify even such a
mass-independent allusion to e2.

We are in position now to observe that [L] = [E2] = [(∂A)2], and that in
the absence of a natural length it is difficult to see how any ∂E-dependence
might be built into L; indeed, if we insist that L be Lorentz-invariant, that
it give rise to linear field equations, and that the implied energy density S00

be non-negative, then the Lagrangian density familiar from §4 would appear
to exhaust the possibilities. Our “2-dimensional electrodynamics” acquires on
those grounds a certain claim to uniqueness.

If we were (maybe with ψ = e
i
�
S in mind) motivated to write ekS we would

again find ourselves with no alternative but to set k ∼ 1/�. And if we were—as
later we will be—motivated to write ekA it would follow from previous remarks
that we have no alternative but to set k ∼ 1/

√
�c .

Looking finally to the dimensionality of the source term J , we know,
whether we work from the structure (13) of the field equations or from the
structure (31) of the associated Lagrangian density, that

[J ] = charge density
[c · J ] = current density

}
(70)

so my J-notation is inconsistent with an established convention. Notice finally
that

[JA] = energy density ⇐⇒ [eA] = energy



Dynamics of the source 41

8. Motion of a charged particle in an ambient field. To describe the relativistic
motion of a mass point m we write

Kµ = d
dτ p
µ (71)

pµ ≡ muµ with uµ ≡ d
dτ x

µ = γ
(
c
v

)
(72)

and require of the Minkowski force Kµ that

K ⊥ u in the Lorentzian sense: uµK
µ = 0 (73)

In the electrodynamical application we require that K depend upon the local
value of the ambient field, but in such a u-dependent way as to achieve K ⊥ u.
Maxwellian theory supplies an antisymmetric field tensor Fµν , and so permits
such an objective to be achieved by literally the simplest of means; one writes40

Kµ ≡ (e/c)Fµνuν (74)

and finds that the antisymmetry of Fµν does all the work. In the 2-dimensional
theory the electomagnetic field is, however, a vector field; some other means
must be devised to achieve K ⊥ u.

The simplest procedure would appear to be to write

Kµ = eFµ⊥

= e
{
Fµ − 1

c2 (uαFα)uµ
}

= e
{
gµα − 1

c2u
µuα

}
Fα

= e 1
c2

{
gµλgαβ − gµαgλβ

}
Fλuαuβ




(75)

The force law (75) is, like its Maxwellian counterpart (74), linear in the field
variables, but it is quadratic in the components uµ of relativistic velocity.41 It
works (in the sense that it achieves K ⊥ u) in consequence of

gαβu
βuα = uαu

α = c2

In  G. Nordström explored the possibility that (75) might be made the basis
of a scalar theory of gravitation,42 and it was Nordström who (in collaboration
with Einstein) taught us how to extract the most characteristic juice from (75).

Recall from (26) that Fµ = −∂µA. Introducing this information into (75)
we have

Kµ = −e
{
∂µA− 1

c2 (uα∂αA)︸ ︷︷ ︸uµ}
= d
dτA

= −e
{
∂µA− 1

c2

[
d
dτ (Auµ)−Aaµ

]}
with aµ ≡ d

dτ u
µ

40 For details see classical electrodynamics (), pp. 267–276.
41 In relativistic dynamics () I describe (p. 20) a population of force

laws Kµ that depend upon ascending powers of uµ, and of which (75) provides
the simplest example. Those laws are, however, of no present utility, since they
depend also upon tensor fields of ascending rank.

42 See A. Pais, Subtle is the Lord (), pp. 232–235.



42 “Electrodynamics” in 2-dimensional spacetime

Familiarly, a ⊥ u. Nordström’s idea was to abandon the aµ-dependent term in
the preceding equation; i.e., to adopt this alternative force law43

Nµ ≡ −e
{
∂µA− 1

c2
d
dτ (Auµ)

}
(76)

The equation of motion then reads Nµ = d
dτ (muµ) which by rearrangement

becomes44
d
dτ

{
(mc2 − eA)uµ

}
= −ec2∂µA (77.1)

Nordström attached physical importance to the observation that the preceding
equation can be written

d
dτ (m

∗uµ) = −e∂µA with m∗ ≡ m− (e/c2)A
�

d
dt (mvvv) = −∇∇∇U : Newtonian counterpart

My own special interest in (77.1) derives from the circumstance that it lends
itself so easily to Lagrangian formulation.

To construct such a formulation of the relativistic dynamics of a particle
one is tempted simply to write{

d

dτ

∂

∂uµ
− ∂

∂xµ

}
L(x, u) = 0 (78)

and to insure covariance by requiring that L(x, u) be Lorentz invariant. To
proceed thus is, however, to proceed at risk of violating the condition

gαβu
βuα = c2 (79)

43 Starting with K ⊥ u, we obtain N by abandoning a term that is itself
normal to u, so clearly N ⊥ u, as required. A similar argument shows N to
be necessarily acceleration-dependent—precisely because K isn’t. Potentially
more damaging is the circumstance that by discarding a gauge-sensitive term
we have sacrificed the gauge-invariance of K.

44 Compare this with the unadjusted equation of motion Kµ = d
dτ (muµ)

which can, by identical manipulations, be brought to the form

d
dτ

{
(mc2 − eA)uµ

}
= −ec2

{
∂µA + Aaµ

}
(77.2)

On pp. 245–259 in electrodynamics () I present a detailed comparative
discussion about what (77.1) and (77.2) have to say concerning the “relativistic
harmonic oscillator” eA = 1

2kx
2. The moral of that tale is that it is meaningless

to speak of “the” relativistic generalization of any given non-relativistic system;
there are a variety of such generalizations—each with things to recommend it.
What one needs is a principle of choice.
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which has no non-relativistic counterpart, but enters into relativistic kinematics
as an inviolable constraint—a concomitant of the definition of proper time.
Several methods have been devised for dealing with this bothersome detail; the
simplest, most frequently encountered and least satisfactory is to proceed as
outlined, but with fingers crossed. If, for example, we set

L(x, u) = 1
2 (m− e 1

c2A) · gαβuβuα (79)

then (78) gives

d
dτ

{
(m− e 1

c2A)uµ
}

+ e· 1
c2 gαβu

βuα︸ ︷︷ ︸ ·∂µA = 0

= 1 : adjustment made “by hand”

which is precisely (77.1).45 The success of the method appears to be entirely
“accidental,” but since the list of such accidents includes most relativistic
systems of practical interest (and since the method is—when it works—so
swiftly efficient) most casual authors are content to overlook the fact that the
method is defective in principle. Immune from such criticism is a method which
uses the “method of Lagrange multipliers” to accommodate (79) as an explicit
constraint. One writes

L̃(x, u;λ) = L(x, u) + 1
2λ(u2 − c2)

and obtains (note that ω ≡ dλdτ is in fact absent from L̃){
d

dτ

∂

∂uµ
− ∂

∂xµ

}
L̃(x, u;λ) =

d

dτ

[
∂L

∂uµ
+ λuµ

]
− ∂L

∂xµ
= 0{

d

dτ

∂

∂ω
− ∂

∂λ

}
L̃(x, u;λ) ∼ u2 − c2 = 0

The constraint (79) has joined the population of “equations of motion.” The
remaining equations can, with clever effort,46 be brought to the form{

d

dτ

∂

∂uµ
− ∂

∂xµ

}
L(x, u)+ strange term = 0

strange term ≡ 1
c2

d

dτ

{(
L− uα

dL

duα

)
uµ

}

 (80)

We note that the “strange term” vanishes if L is homogeneous of unit degree
in u, though in applications it is frequently the “strange term” that does much
of the work. Suppose, for example, we were to set

L(x, u) = mc2 − eA (81)

45 I have been unable to concoct a Lagrangian that by similar slight of hand
—or, indeed, by any method— yields (77.2).

46 See pp. 30–31 in relativistic dynamics (). The argument is due to
L. Infeld ().
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Then (80) gives e∂µA + 1
c2
d
dτ

{
(mc2 − eA)uµ

}
= 0, which is precisely (77.1).

This method stands, as will emerge, in an interesting relationship to what I
have come to regard as the “method of choice,” but to describe the latter I
must back up a bit:

Relativity promotes (but cannot lay exclusive claim to) the view that a
mass point, simply by persisting, traces a curve—a “worldline”—in spacetime.47

To distinguish one point from another we parameterize the curve, writing

{t(θ), x1(θ), . . . , xn(θ)}

In non-relativistic physics it is physically natural to associate θ with time
itself; we obtain then the more primitive notion of a “t -parameterized curve in
configuration space:

{x1(t), . . . , xn(t)}
In relativistic physics we take advantage of the fact that spacetime has become
a metric space to associate θ with arc length s (or equivalently, with proper
time τ ≡ s/c):

{x0(τ), x1(τ), . . . , xn(τ)}
Those associations are, however, entirely conventional; Hamilton’s principle,
and the associated Lagrange equations—which serve to set the figure of the
worldline—are structurally stable with respect to arbitrary re-parameterizations
of the curve.48 Conventionally one proceeds from

S[path] =
∫

L(x, ẋ, t) dt

but upon arbitrary re-parameterization

t −−−−−−−−−−−−−−−−−→
re-parameterization

θ = θ(t) : t = t(θ)

one can use ẋ = dx/dt = dx
dθ /

dt
dθ ≡ x̊/ t̊ to obtain

S[path] =
∫

L
(
x(θ), x̊/ t̊, t(θ)

)
· t̊︸ ︷︷ ︸ dθ

≡ L̃
(
t(θ), x(θ), t̊(θ), x̊(θ)

)
=

∫
L̃

(
x(θ), x̊(θ)

)
dθ in relativistic notation

↓{
d

dθ

∂

∂x̊µ
− ∂

∂xµ

}
L̃(x, x̊) = 0 (82)

47 A closed string traces similarly a “worldtube,” etc.
48 The point is seldom noted in classical mechanics (but see classical

mechanics (), p. 141 and Appendix A: “Rubber clocks”), more commonly
encountered in relativistic mechanics, and central to the relativistic quantum
mechanics of strings; see §1.3 of M. B. Green, J. H. Schwarz & E. Witten,
Superstring Theory ().
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The formalism acquires much of its distinctive flavor from the circumstance
that L̃(x, x̊) is manifestly homogeneous of unit degree in the variables x̊µ:

L̃(x, λx̊) = λL̃(x, x̊)

It is, for example, immediately evident that the formalism possesses no
Hamiltonian companion, for the requisite Legendre transformation

L̃(x, x̊) −−−−−−−−−→
Legendre

H̃(x, p) = pµ x̊
µ − L̃(x, x̊)

∣∣∣
x̊= x̊(x,p)

cannot be executed.49 By Euler’s theorem

L̃ = x̊µ
∂L̃

∂x̊µ

From this it follows that

0 =
d

dθ

{
L̃− x̊µ

∂L̃

∂x̊µ

}
=

∂L̃

∂xµ
x̊µ +

∂L̃

∂x̊µ
˚̊xµ − ˚̊xµ

∂L̃

∂x̊µ
− x̊µ

d

dθ

∂L̃

∂x̊µ

= x̊µ
{

∂L̃

∂xµ
− d

dθ

∂L̃

∂x̊µ

}
(83)

from which we conclude that only n of the n+1 equations (82) are independent;
one is an implication of the others. To illusrate how these ideas work out in
practice, we set

L̃(x, x̊) = (mc− ecA)
√
gαβ x̊

α x̊β (84)

which is
• manifestly Lorentz invariant
• homogeneous of unit degree in the variables x̊µ

• dimensionally correct provided we assume [θ] = time, which we can do
without loss of generality.

Working from (82) we find{
d

dθ

∂

∂x̊µ
− ∂

∂xµ

}
L̃ =

d

dθ

{
(mc− ecA)

x̊µ√
x̊·x̊

}
+ e
c (∂µA)

√
x̊·x̊

=
dτ

dθ

d

dτ

{
(mc− ecA)

uµ
c

}
+ e
c (∂µA)

dτ

dθ
c

=
1
c2

dτ

dθ

{
d

dτ
(mc2 − eA)uµ + ec2∂µA

}
= 0

which once again precisely reproduces (77.1). We are inspired by (83) to notice
(and gratified to confirm) that

uµ
{
d

dτ
(mc2 − eA)uµ + ec2∂µA

}
= (mc2 − eA) (uµaµ)︸ ︷︷ ︸−edAdτ (uµuµ)︸ ︷︷ ︸ +ec2 (uµ∂µ)︸ ︷︷ ︸A = 0

0 c2 d
dτ

This is valuable information which other methods do not call to our attention.

49 This remark carries with it some insight into why relativistic quantization
always entails the deployment of special apparatus.
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We are brought thus to the conclusion that (77.1)—of which

d
dτ (muµ) = −e

{
∂µA− 1

c2
d
dτ (Auµ)

}︸ ︷︷ ︸
� Minkowski force ⊥ to uµ, as required

d
dτ (m

∗uµ) = −e∂µA
= eFµ (85.1)

m∗ ≡ m + ∆m with ∆m ≡ − 1
c2 eA (85.2)

comprise alternative formulations—provides a description of the relativistic
motion of a charged mass point in the presence of an ambient electromagnetic
field which is, in every formal respect,50 entirely satisfactory; it is manifestly
Lorentz covariant, and admits of Lagrangian formulation (whatever that phrase
is imagined to mean). The ∆m-term is critical to maintenance of the mandatory
K ⊥ u condition, but

∆m ↓ 0
{

in the weak-field limit |eA|  mc2

in the non-relativistic approximation c ↑ ∞

Since A is a scalar field it does, by the way, make frame-independent good sense
to speak of a “weak field.”

It is notable that A enters nakedly (i.e., undifferentiatedly) into (85); the
motion of the particle depends upon the value of A (as well as upon the values
Fµ = −∂µA of its derivatives). Evidently the presence of a single charged
particle in the 2-dimensional universe serves to promote the A-field to the status
of a “physical” field. We will, as we proceed, want to be on the alert for means
to clarify this surprising development.

I bring this discussion to a close with some remarks intented to clarify this
question: “To what extent is (85.2) a forced implication of (85.1)?” Assuming
the ∗ on m∗ to signify simply that m∗ bears some unknown x-dependence, we
have

dm
dτ

∗
uµ + m∗aµ = eFµ (86)

and by u ⊥ a are motivated to resolve the vector on the right into components
which are respectively parallel and perpendicular to uµ:

Fµ = 1
c2 (Fαuα)uµ +

{
Fµ − 1

c2 (Fαuα)uµ
}

Equation (86) is resolved thus into a pair of equations:

dm
dτ

∗
= e 1

c2 (Fαuα) (87.1)

m∗ duµ

dτ = e
{
Fµ − 1

c2 (Fαuα)uµ
}

(87.2)

50 We are, since we don’t inhabit 2-dimensional spacetime, precluded form
saying “in every observational respect”!
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If Fµ = −∂µA then (87.1) becomes dmdτ
∗

= −e 1
c2 (uα∂α)A = −e 1

c2
dA
dτ , which

integrates promptly to give

m∗ =m0 − e 1
c2A

m0 = m + arbitrary constant of integration

By a curiously round-about mechanism A-gauge has re-entered the theory!51

9. Interactive dynamics of source and field. We have now in hand a theory that
describes

• field motion in the presence of a prescribed source J
• particle motion in the presence of a prescribed field A

but are not yet in position to describe what happens when you place matter
and field in the same box and let them simply (but self-consistently) “fight it
out.” The situation is clouded by the circumstance that J , though a scalar field,
enters the field equations (13) as a current-like entity, though matter responds
“like a charged particle” to ambient fields. The problem now before us is to
clarify the interaction mechanism.

The field-particle interaction problem tends—in all of its manifestations,
and irrespective of however sharply it may speak to our physical intuition—to
be formally awkward; particle-particle interactions pose no such difficulty. Nor,
for that matter, do field-field interactions. It is in an effort to simplify analysis
of the issue before us that we now ask: “How, in 2-dimensional theory, does
an electromagnetic field interact with a distributed system of charged matter?”
In pursuing the question I borrow from arguments standard to our Maxwellian
model.52

Fluid mechanics concerns itself with two fields: ρ(t, xxx), a scalar field which
describes “mass density,” and vvv(t, xxx), a vector field which describes “fluid flow.”
Their product is susceptible to a double interpretation:

ρvvv ≡ “mass current” ≡ “momentum density”

By the first interpretation one has

∂
∂tρ +∇·∇·∇·(ρvvv) = 0 (88.1)

which expresses mass conservation. Newton’s law gives rise to the equations

∂
∂t (ρvi) + ∂j(ρvivj − σij) = fi (88.2)

where fi described the “impressed force density” and the “stress tensor” σij
describes the stresses which fluid elements exert upon contiguous fluid elements;

51 For related discussion see pp. 245–247 of electrodynamics (), which
gives also some references.

52 See, for example, pp. 301–312 of classical electrodynamics ().



48 “Electrodynamics” in 2-dimensional spacetime

general principles supply the information that σij = σji, but beyond that it is
the special structure assigned to σij that serves to distinguish one fluid type
from another. “Dust” arises when one sets σij = 0.

Equations (88) can be written

∂µs
µν = kν (89)

where the stress tensor has expanded now to become the “stress-energy tensor”

||sµν || ≡




ρc2 ρ c v1 ρ c v2 ρ c v3

ρv1c ρv1v1 − σ11 ρv1v2 − σ12 ρv1v3 − σ13

ρv2c ρv2v1 − σ21 ρv2v2 − σ22 ρv2v3 − σ23

ρv3c ρv3v1 − σ31 ρv3v2 − σ32 ρv3v3 − σ33




and where

|| kν || ≡




0
f1

f2

f3




Here I have borrowed only my notation from relativity, but a “relativistic
fluid dynamics” does result if one assumes the preceding equations to hold—as
written—in the local rest frame of the fluid, and to have responded tensorially
to the Lorentzian boost that brought them to the lab frame.53 Since




0
f1

f2

f3


 and ||uν || = γ




c
v1

v2

v3


→




c
0
0
0



rest frame

are ⊥ in the rest frame

they are, by this construction, ⊥ in all frames: kνuν = 0. These remarks carry
with them the implication that to describe mass conservation (which should
hold even in the presence of forces) we should write not ∂µs

µ0 = 0 (which is
violated when k0 �= 0) but (∂µsµν)uν = 0. Equations (89) are reminiscent of
the electromagnetic field equations (2.1): ∂µF

µν = Jν . The resemblance is,

53 Fluid dynamicists recognize a distinction between the “Eulerian method”
(describe fluid motion relative to the lab frame) and the “Lagrangian method”
(ride along with a fluid element). Here we have adopted the latter viewpoint as
a momentary device. The idea of going to the rest frame to acquire information
about the numbers σij and fi is, of course, familiar from electrodynamics, where
it is the construction[

F = eE
]
rest frame

−−−−−−−−→
boost

[
F = e(E + 1

c v×B)
]
lab frame

that gives rise to the Lorentz force law.
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however, deceptive, for
• while sµν is symmetric, Fµν is antisymmetric;
• kνuν = 0, but Jν is subject to no such condition;
• the equations ∂µsµν = kν hold irrespective of the dimension of spacetime,

but ∂µF
µν = Jν are special to the 4-dimensional world.

To extract from (89) a manifestly covariant account of the relativistic “fluid
dynamics of dust” we have now only to set

sµν = ρuµuν (90)

and the point of this fluid dynamical digression comes at last into view: it
puts us in position to speak of the stress-energy tensor of a particle, and of its
relationship to the stress-energy tensor of the electromagnetic field with which
the particle interacts. We are led to think of a “particle” as so much “degenerate
dust,” and to write

Sµνparticle(x) ≡ c

∫ +∞

−∞
m%

(
x(τ)

)
ẋµ(τ) ẋν(τ)δ

(
x− x(τ)

)
dτ (91)

where the expression on the right vanishes except on the worldline x(τ), and
has the dimensionality of “energy density” because [δ(···)] = 1/(length)n+1. We
now compute

∂µS
µν
particle(x) = c

∫ +∞

−∞
m%

(
x(τ)

)
ẋν(τ) ẋµ(τ) ∂∂xµ δ

(
x− x(τ)

)
dτ

= −c
∫ +∞

−∞
m%

(
x(τ)

)
ẋν(τ) ẋµ(τ) ∂∂xµ(τ)︸ ︷︷ ︸ δ

(
x− x(τ)

)
dτ

= d
dτ

which upon integration by parts yields

= −c
∫ +∞

−∞
d
dτ

[
m%

(
x(τ)

)
ẋν(τ)δ

(
x− x(τ)

)]
dτ︸ ︷︷ ︸

0

+ c

∫ +∞

−∞
δ
(
x− x(τ)

)
d
dτ

[
m%

(
x(τ)

)
ẋν(τ)

]
dτ

The argument thus far is a straightforward adaptation of an argument original
to Minkowski ();54 it has made no reference to the dimension of spacetime,
and has drawn as yet upon no feature of our 2-dimensional theory. But let us
now, as instructed by that theory, set

m%(x) = m− (e/c2)A(x)

54 For parallel discussion of its application to Maxwellian electrodynamics see
p. 337 in electodynamics () or §8.5 in J. Anderson’s splendid Principles
of Relativity Physics ()
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and draw upon (77.1); we obtain

∂µS
µν
particle(x) = ec

∫ +∞

−∞
δ
(
x− x(τ)

)
dτ︸ ︷︷ ︸ ·F

ν(x)

≡ J(x) by proposed definition (92)
= +J(x)F ν(x)

At (20) we established on the other hand that

∂µS
µν
field(x) = −J(x)F ν(x)

So we have achieved

∂µS
µν(x) = 0 with Sµν(x) ≡ Sµνfield(x) + Sµνparticle(x) (93)

which provides an elegant account of the energy-momentum balance maintained
locally by the interactive field-particle system. The analysis pertains to any
instance of a “Nordström theory,” and it pertains in particular to our
“2-dimensional electrodynamics.”

The equations (91) and (92) that serve to define Sµνparticle and J fall at first
sight very strangely upon the eye, but are on second thought entirely natural
(see the figure); both are decorations of the a construction

∫
δ
(
x−x(τ)

)
dτ that

manages to refer simultaneously to the field-theoretic and to the particulate
aspects of the matters at hand (and, as relativity requires, to take a wholistic
view of the worldline). The following remarks are intended to expose more
clearly the meaning and some of the implications of (91) and (92).

The equations (77) that describe the motion of a charged particle can be
written

d
dτ p

µ = eFµ

pµ ≡ m%uµ defines the “momentum 2-vector” of the charged particle

in which notation (91) becomes55

Sµνparticle(x
0, x1) ≡ c

∫ +∞

−∞
pµ(τ)uν(τ)δ

(
x− x(τ)

)
dτ

We (in our intertial frame) write

Pµ(x0) = 1
c

∫
Sµ0particle(x

0, x1) dx1

=
∫ ∫ +∞

−∞
pµ(τ)u0(τ)δ

(
x0 − x0(τ)

)
δ
(
x1 − x1(τ)

)
dτdx1

55 I allow myself to write pµ(τ) where, owing to the x-dependence which
m% acquires from A(x), I should more properly write pµ

(
τ, x(τ)

)
.
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Figure 1: Representation of the construction fundamental to the
definitions (91) and (92); i.e., of a field which vanishes except in
the immediate vicinity of a worldline x(τ).

to describe (at time x0) the components of “total momentum of the particle,
thought of as a field.” But a well-known property of the δ-function supplies

δ
(
x0 − x0(τ)

)
=

1
u0(τ0)

δ(τ − τ0) (94)

where τ0, defined by x0 − x0(τ0) = 0, is the proper time at which the worldline
x(τ) punctures the timeslice to which we have assigned the name x0. So we
have

Pµ(x0) =
∫

pµ(τ0)δ
(
x1 − x1(τ0)

)
dx1 = pµ(τ0) (95)

This is, from several points of view, a gratifying result; it illustrates how field
theory and particle theory manage, in their respective ways, to say the same
thing. And it exposes in explicit detail how it comes about that

Pµ ≡
∫

timeslice

Sµ0d(volume)

transforms vectorially, even though Sµν transforms tensorially.56

56 It makes therefore no more sense to speak of the “transformation properties
of the isolated components Sµ0 ” than it does to speak of those of E without
reference to B. The preceding equation loses all of its mystery, by the way, when
it is properly notated:

Pµ ≡
∫

timeslice

Sµα dσα
dσα has the meaning supplied by the exterior calculus
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Which brings us to J , the sharpened interpretation of which57 has been
our motivating objective throughout this entire discussion. In Maxwellian
electrodynamics the analog of (92) reads Jν = ec

∫
ẋν(τ)δ

(
x− x(τ)

)
dτ , and a

variant of the argument that gave us (95) gives58

Jν(x0, xxx) = eδ
(
xxx− xxx(τ)

) (
c

vvv(τ)

)
τ=τ0

In 2-dimensional electrodynamics, we bring (94) to (92) and obtain

J(x0, x1) = ec
1

u0(τ)
δ
(
x1 − x1(τ)

)∣∣∣∣
τ=τ0

= 1
γ · e · δ

(
x1 − x1(τ)

)∣∣∣
τ=τ0

(96)

which has, as was anticipated already at (70), the physical dimension of a
“charge density,” and where the leading 1

γ is an artifact of our having sectioned
the invariant construction (92). At (85.1) we obtained γ ddt (m

%uµ) = eFµ which
by (96) becomes

d
dt (m

%uµ) =
∫

timeslice

JFµ dx (97)

Finally—drawing inspiration from (31) and (84)—we form

L(x, x̊;A, ∂A) = Lparticle(x, x̊) + Lfield(F, ∂A) + Linteraction(x,A)

with
Lparticle(x, x̊) ≡ −mc

√
gαβ x̊

α x̊β

Lfield(F, ∂A) ≡ − 1
2g
αβFαFβ − gαβFα(∂βA)

Linteraction(x,A) ≡ e

∫ √
gαβ x̊

α x̊βδ
(
y − x(θ)

)
dθ ·A




(98)

where, since the variable x has been preempted by the particle, I take the field
variables to be y ≡ {y0, y1}. The equations of motion of the interactive system
are

∂µ
∂L

∂(∂µA)
− ∂L

∂A
= −∂µFµ − J(y) = 0

J(y) ≡ e

∫ √
gαβ x̊

α x̊βδ
(
y − x(θ)

)
dθ

↓
= ec

∫
δ
(
y − x(τ)

)
dτ

∂µ
∂L

∂(∂µFν)
− ∂L

∂Fν
= Fµ + ∂µA = 0

57 See again the paragraph which which I introduced this section.
58 See p. 308 in the class notes cited in footnote 54. Notice that Jν has

the physical dimension [c · (charge density)] of (see again (66)) a “current;” to
achieve consistency with my present eccentric conventions one should omit the
c-factor that was build into the definition of Jν .
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{
d

dθ

∂

∂x̊µ
− ∂

∂xµ

}
L =

dτ

dθ

{
d

dτ
(−m + e

cA)uµ − ec∂µA

}
= 0

which precisely reproduce the field equation (30.1), the equation (30.2) that
serves to introduce the potential A, the definition (92) of J and the equation
(85) that describes the field-driven motion of a solitary charged particle. The
derivation of the interactive part of the last of the preceding equations involves
integration by parts and other standard trickery which I have omitted.

It is a striking fact that in no respect is the preceding material special to
2-dimensional spacetime. It becomes immediately evident upon perusal of (for
example) Anderson’s §8-859 that we have done no more than to put fresh wine
into a very old bottle; we have shown that the theory invented by Nordström to
provide a (special) relativistic account of gravitation can, in the 2-dimensional
case, be interpreted to provide a natural analog of Maxwellian electrodynamics.
That our 2-dimensional theory has, with regard to so many of its details, such
a strikingly “Maxwellian” look and feel about it can be attributed now to
the circumstance that those qualities attach to all instances of Nordström’s
theory—whatever, the dimension, and whatever may be the intended physical
interpretation.

So what is the answer? Does J more nearly resemble ρ or 1
c j? The

question—which would not have arisen but for the “electromagnetic”
interpretation we have attached to a 2-dimensional Nordström theory, and the
answer to which pertains necessarily to all such theories—made seeming sense
when we noticed that (13.1) more nearly resembles Ampere’s Law (1.2) than
Gauss’ Law (1.1). But it can make no transformation-theoretic sense to ask
“Does a scalar J more nearly resemble the J0-component or the Jk-components
(k = 1, 2, 3) of a 4-vector?” In reference to the Lagrangian formalism, we found
that

JµAµ becomes JA

which has “minimal coupling” structure in both cases; J lost its index because A
did. But to ask “How did A come to be a scalar?” is to ask “How did the theory
come to be constructed the way it is? Why is it the case that in 2p -dimensional
spacetime F is a p -form while A and J are 1-forms?” The only possible answer
is “Because that is the (attractive) hypothesis we have chosen to explore.” The
absence of an x̊-term from (92) seemed at the time to speak of a “ρ -like”
interpretation, but we found subsequent to (98) that covert x̊-dependence had
actually to be considered present in (92): c←−

√
gαβ x̊α x̊β .60 The short answer

to our question, therefore, is “both. . . and neither.”

10. Charged dust. In the preceding section I looked to fluid dynamics in order
to obtain a relativistic theory of “dust,” from which I could export a conception

59 See again footnote 54 for the detailed citation.
60 It is interesting that in relativity a particle can, in this sense, acquire

significant “velocity-dependence” by just sitting there!
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(91) of the “stress energy tensor of a relativistic particle” and, relatedly, of the
“source field” J(x) that can by (92) be associated with such a particle when
it carries charge. Anyone who considers the definitions (91) and (92) to be
self-evident—or to be, in any event, sufficiently justified by their demonstrated
success—is, of course, free to disclaim any interest either in fluids or in dust.
Here I take the opposite point of view, and do so for a reason more formal than
physical. The Lagrangian (98) acquired its bizarrely hybrid design from the
circumstance that it refers to an interactive system of the type

field⇐⇒ particle

It is to achieve symmetry of design that I undertake to replace the solitary
particle with a distributed population of semi-autonomous particles; the
resulting system

field⇐⇒ field of particles (dust)

might have held interest for Nordström as having to do with “gravitation in a
dust-filled universe.” Though I will phrase my remarks as though I had physical
interest in the (2-dimensional) “electrodynamics of a charged dust cloud,” my
interest in the problem is in fact (and as I have already indicated) entirely
formal, methodological.

Since fluids are, in general, dissipative, one cannot expect to be able to
devise a “Lagrangian formulation of fluid dynamics.”61 But dust is a fluid of
such elemental simplicity as to suggest that Lagrangian methods may in fact
be applicable. I will carry this discussion as far as I can, but readers may not
wish to follow in my steps, for my goal continues to elude me, and the literature
known to me62 provides little assistance.

The field variables are taken to be mass density ρ(x), charge/current
density J(x) and uµ(x). We assume

uµ(x)uµ(x) = c2 : all x (99)

61 The situation is not without its curious features; it was fluid dynamics
that introduced us (meaning Stokes, Maxwell and their contemporaries) to the
stress-energy tensor, but in fluid dynamics that object—which is fundamental to
Lagrangian field theory, and springs there from Noether’s theorem—is deprived
of any kind of “Noetherian basis.” It is supplied instead by Newton’s laws
of motion. And it enters, like the p in d

dtp = F , into what is primarily an
equation of motion, and only exceptionally/incidentally into the expression of
a conservation law.

62 An accessibly detailed account of this class of problems can be found in
Chapter 9: “Relativistic continuum mechanics” of James Anderson’s Principles
of Relativity Physics (), but Anderson abandons Lagrangian methods just
at the point where I need them. Also helpful (in an eccentric way) are §§30–33
(also §§78–79) of V. Fock’s The Theory of Space, Time and Gravitation (),
but Fock—who claims in his introduction to have learned his physics “under
the influence of Lenin’s ‘Materialism and Empirocriticism’ ”—appears to be
philosophically antagonistic to be the Lagrangian method.
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and are prepared to assume the x-independence of

J(x)/ρ(x) = universal charge/mass ratio: call it e/m (100)

We expect to have

∂µ(ρuµ) = 0 : mass conservation (101)

We expect the role of ddτ to be taken over by the “substantial derivative” uα∂α,
and therefore to have

uα∂α(ρuµ) = Kµ (102)

Then Kµuµ = uα∂α(ρuµuµ) − ρuαuµ∂αuµ = c2uα∂αρ − 1
2ρu

α∂αc
2 entails

uα∂αρ = 1
c2 (Kαuα); returning with this information to the equation of motion

from which it sprang, we have

ρuα∂αu
µ︸ ︷︷ ︸ = Kµ − uµ · uα∂αρ = Kµ − 1

c2 (Kαuα)uµ = Kµ⊥

= ∂α(ρuαuµ) by mass conservation (103)

In 2-dimensional electrodynamics we are motivated to set

Kµ = JFµ = e
mρFµ = − emρ ∂µA (104)

Then

uα∂αρ = 1
c2 (Kαuα) becomes (uα∂α)ρ = − e

mc2 ρ (uα∂α)A (105)
↓

(uα∂α) log ρ = −(uα∂α) (eA/mc2)︸ ︷︷ ︸
dimensionless

so along a flowline we expect to have something like63

ρ(θ) = ρ(0) exp
{
− e
mc2

∫ θ
0

A(ϑ) dϑ
}

(106)

It follows also from (105) that

Kµ‖ = 1
c2 (Kαuα)uµ = − e

mc2 u
µρ (uα∂α)A

= −ρuα∂α
(
e
mc2 u

µA
)

by (uα∂α)uµ = 0

= −∂α
(
e
mc2 ρA · u

αuµ
)

by mass conservation

63 For the occurrence of a similar formula in what appears, at least
superficially, to be quite a different physical setting, see p. 463 in classical
mechanics ()
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Returning with this information to (103)—which upon installation of (104)
reads

∂α(ρuαuµ) = JFµ⊥ (107)

—we obtain

∂α(ρ%uαuµ) = JFµ (108)
ρ% ≡ ρ− e

mc2 ρA = ρ− 1
c2 JA (109)

Writing
Sµνcharged dust(x) ≡ ρ%(x)uµ(x)uν(x) (110)

we have, according to (108),

∂µS
µν
charged dust = JF ν (111)

By specialization (i.e., by considering charged dust that consists of but a single
charged particle) one expects to recover (91)←− (110) and (92)←− (111), but
I will not linger to write out the explicit demonstration.

Nor will I linger to record the fruit of my efforts—thus far unsuccessful
as they have been—to obtain the preceding equations from a Lagrangian. It
remains unclear to me what to take as my “field variables,” how to resolve
equations into “equations of motion” and “conservation laws implied by the
equations of motion,” how to manage the constraint (99). The source of my
difficulty seems to reside in the circumstance that we are dealing here (as in fluid
dynamics generally) with a system of first order partial differential equations. I
cling, nevertheless, to the conviction that the answer—once it is in hand—will
be so simple as (in retrospect) to seem obvious.

11. Is the theory an instance of a gauge theory? Maxwellian electrodynamics
managed by intentional design to provide a unified account of the great variety
of electrical and magnetic phenomena which were known already before ,
and gave rise unbidden to an electromagnetic theory of light. Maxwell’s
equations—what better evidence that they speak of real stuff?—promptly
spawned several life-transforming industries (electrical power generation and
distribution, telegraphy, radio). But they created a theoretical problem where
none had been before. I allude to the “æther problem,” the resolution of
which (invention of special relativity) was found to reside not (as was initially
supposed) in specific phenomenological implications of the equations, but in
their formal structure. Thus did we acquire acquaintance with one of the great
symmetry principles of the world. But the tutorial role of electrodynamics did
not come then to an end; Maxwell’s creation informed and inspired those who
successively invented quantum mechanics, general relativity (gravitational field
theory), quantum electrodynamics and the quantum field theory that supports
modern theories of elementary particles. At about the same time as I first
opened my eyes to the light of day (which is to say: not all that recently) a few
theorists gained the first dim perception that electrodynamics had something
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entirely novel yet to teach us about the symmetry structure of the world, and by
the time I had become a graduate student that perception had acquired a sharp
cutting edge; “gauge field theory” had come into being.64 Electrodynamics
enjoys a relationship to “physical reality” which is today no less urgently
immediate than ever it was, and the gauge theorist intends no denial of that fact
when (in a somewhat informal moment) he allows himself to assert that “the
electromagnetic field was called into being in order to impart enhanced internal
symmetry to field systems that, on their face, have nothing to do with the
physics of electrical charge.” The question I propose now to explore is this:
“Is a physicist who resides in 2-dimensional spacetime likely to say the same
thing?” I begin with a review of the simplest elements of gauge field theory.65

Let complex scalar fields ψ(x) and ψ∗(x) be required to satisfy the
Klein-Gordon equations

ψ + κ2ψ = 0 and complex conjugate (112)

where [κ] = 1/length.66 The associated Lagrange density can be written

L(ψψψ, ∂ψψψ) = gαβψ∗
βψα − κ2ψ∗ψ (113)
ψα ≡ ∂αψ

and gives rise to the stress-energy tensor

Sµν =
{
ψ∗
µψν + ψµψ

∗
ν

}
− Lgµν (114)

in connection with which we have

∂µSµν =
{
ψν ψ∗ + ψ∗

ν ψ + (ψ∗
µψ
µ)ν

}
− (ψ∗

αψ
α)ν + ψνκ

2ψ∗ + ψ∗
νκ

2ψ

= ψν
(

ψ∗ + κ2ψ∗)︸ ︷︷ ︸ +ψ∗
ν

(
ψ + κ2ψ

)︸ ︷︷ ︸ = 0

0 0

We note in passing that Sµν is in all cases symmetric, and that

Sαα = (2−dim)ψ∗
αψ
α + (dim)κ2ψ∗ψ

dim ≡ dimension of spacetime

64 For an excellent account of the history of this subject, see L. O’Raifeartaigh,
The Dawning of Gauge Theory (1997).

65 For a more fulsome introduction to the subject see Chapter 11 in David
Griffiths’ Introduction to Elementary Particles ().

66 In relativistic quantum theory it is natural to set

κ = mc/� = 1/Compton length

but we have no actual need at present to be so specific. I will, however,
honor quantum mechanical convention by calling κ the “mass parameter.” To
reduce extraneous notational clutter I assign to ψ the (quantum mechanically
unnatural) dimension [ψ] =

√
(energy density) · (length)2.
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is in all cases Lorentz invariant, but only very exceptionally (only, that is to
say, when spacetime is 2-dimensional and κ = 0) is the stress-energy tensor
traceless.

The system just described will for us play the role of a “field system that,
on its face, has nothing to do with the physics of electrical charge. . . ” It was
selected because it exhibits an elementary instance of an “internal symmetry;”
the action functional S =

∫
L is transparently invariant under global phase

adjustments
ψ �−→ e+iω · ψ
ψ∗ �−→ e−iω · ψ∗

}
(115)

By Noetherean analysis we are led to the associated conservation law

∂µQ
µ = 0 (116)

Qµ ≡ i
(
ψ∗ψµ − ψ ψ∗

µ

)
The objective of our gauge theorist is to admit the possibility that ω may vary
(smoothly) from point to point in spacetime, and thus to achieve “enhancement”
in this sense:

global −−−−−−−−−−−−−−−−−−−−−−−−−→
objective of gauge field theory

local

But if ω is x-dependent then

ψ �−→ Ψ = e+iω · ψ
ψ∗ �−→ Ψ∗ = e−iω · ψ∗

induces

∂µψ �−→ ∂µΨ = e+iω ·
(
∂µ + iωµ

)
ψ

∂µψ
∗ �−→ ∂µΨ∗ = e−iω ·

(
∂µ − iωµ

)
ψ∗

To escape the force of this difficulty, the gauge theorist makes the replacement

∂µ −→ Dµ ≡ ∂µ − ig · aµ (117)

where aµ are the components of a vector field (the “gauge field,” sometimes
called the “compensating field;” g will acquire the interpretation of a coupling
constant) and—in order to achieve(

∂µ − ig · aµ
)
ψ �−→

(
∂µ − ig ·Aµ

)
Ψ = e+iω ·

(
∂µ − ig ·Aµ + iωµ

)
ψ

= e+iω ·
(
∂µ − ig · aµ

)
ψ(

∂µ + ig · aµ
)
ψ∗ �−→

(
∂µ + ig ·Aµ

)
Ψ∗ = e−iω ·

(
∂µ + ig ·Aµ − iωµ

)
ψ

= e−iω ·
(
∂µ + ig · aµ

)
ψ
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—stipulates that the meaning of the phase transformation will at this point be
expanded to include additive participation by the gauge field

aµ �−→ Aµ = aµ + 1
g · ∂µω

The gauge theorist now abandons the original system, and looks instead to its
sibling

L′(ψψψ, ∂ψψψ ; a) ≡ gαβ(Dβψ
∗)(Dαψ)− κ2ψ∗ψ

= gαβ(ψ∗
β + ig · aβψ∗)(ψα − ig · aαψ)− κ2ψ∗ψ

= L(ψψψ, ∂ψψψ ) +
{
g · i(ψ∗ψα − ψ ψ∗

α)︸ ︷︷ ︸ aα + g2(ψ∗ψ)(aαa
α)

}
= Qα

= Lψ field(ψψψ, ∂ψψψ ) + Linteraction(ψψψ, ∂ψψψ ; a)

Next he notices that

∂µaν �−→ ∂µAν = ∂µaν + ∂µ∂νω

⇓
fµν ≡ ∂µaν − ∂νaµ is gauge invariant: fµν = Fµν

and that the trace-like construction fαβfβα is also Lorentz invariant. With the
intention of launching the gauge field into motion (and with, as will emerge, the
effect of “calling electrodynamics into being”) our gauge theorist finally forms

L′′(ψψψ, ∂ψψψ ; a, ∂a) ≡ L′(ψψψ, ∂ψψψ ; a) + Lgauge field( · , ∂a)
Lgauge field( · , ∂a) ≡ 1

4f
αβfαβ

= Lψ field(ψψψ, ∂ψψψ ) + Lgauge field( · , ∂a) + Linteraction(ψψψ, ∂ψψψ ; a)

and obtains the following equations of motion:

(∂µ − igaµ)(∂
µ − igaµ)ψ + κ2ψ = 0 and complex conjugate (118)

∂µf
µν = jν (119.1)

jν ≡ g ·
{
Qν + 2gψ∗aνψ

}
(119.2)

= g ·
{
iψ∗(∂ν − igaν)ψ + conjugate

}
fµν ≡ ∂µaν − ∂νaµ (119.3)

This coupled system is, by explicit design and intent, invariant under gauge
transformations of the composite form

ψ �−→ e+iω(x) · ψ
ψ∗ �−→ e−iω(x) · ψ∗

aµ �−→ aµ + ∂µϕ with ϕ ≡ 1
g ω


 (120)
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In the limit g ↓ 0 we recover the equation (112) which was our point of
departure, though it is joined now by a companion: ∂µf

µν = 0. That

∂νj
ν = 0 (121)

is (by the antisymmetry of fµν) an immediate implication of (119.1), but if one
looks to the definition (119.2) of jν then it follows also by quick calculation
from (118).

As before, let
n ≡ dimension of space

n + 1 ≡ dimension of spacetime

Looking back over the work of the preceding paragraph, we see it to be the case
that

[ψ ] = [aµ] =
√

(energy density) · (length)2

[gaµ] = 1/length

[g ] = 1/
√

(energy density) · (length)4


 all n

It is, however, an implication jointly of (64) and of (69) that

[e] =
√

(energy density) · (length)2(n−1)

= (length)n−3
√

(energy density) · (length)4

= [e2/�c] · [1/g]
We come thus to the striking conclusion that in all cases it makes dimensional
good sense to write

g = e/�c (122)

It would be difficult for an inhabitant of 4-dimensional spacetime not to
infer that equations (119) are speaking of Maxwellian electrodynamics, and to
make the implied assignments of physical meaning to the field variables fµν . The
only odd detail has to do with the structure of the conserved current jµ, which
contains a term that depends nakedly—but in a gauge-invariant way!—upon the
gauge field (4-potential) aµ. This is, to some extent, an artifact of our model;
had we taken the Dirac equation (rather than the Klein-Gordon equation) as
our starting point then the offending term would have been absent.67 It is,
in any event, the case that the “offending term” is critical to the successful
derivation of (121) from (118).

Consider now the conclusions that would be drawn by the gauge theorist
who inhabits (n + 1)-dimensional spacetime. He will agree that the gauge
program has called into being a vector field aµ—a 1-form

aaa ≺




a0

a1
...
an




67 See p. 199 (also pp. 193 & 195) in classical field theory ().
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in the language of §1. And that the gauge field has given rise by (119.3) to an
antisymmetric tensor field of rank two—a 2-form:

aaa −→ dddaaa = f ≺




0 f01 f02 . . . f0n

0 f12 . . . f1n

0 . . . f2n

(−)
. . .

...
0




He will dismiss df = 0 as a triviality, and will agree that ∗∗∗d∗∗∗f = j (which
entails ∗∗∗d∗∗∗j = 0 ≺ ∂µj

µ = 0; his j is seen to be a 1-form) serves to capture the
substance of (119.1).

Remarkably; Maxwell, we and our gauge theorist all agree that equations
of the form (9)—which can be rendered

∗∗∗d∗∗∗F = J with F = dA invariant under A −→ A + dϕϕϕ

—serve to describe “electrodynamics” in the presence of a prescribed source.
But our gauge theorist has (except in the 4-dimensional case, and for reasons
developed already in my introduction) been forced to abandon any claim that
the components of F ≺ Fµν can be resolved into “E-fields, and an equal number
of B-fields.”

Looking now to the specifics of the 2-dimensional situation: we take F to
be a 1-form (a p -form with p = spacetime dimension

2 ); then A and J are 0-forms
(scalar fields), with implications which I have been at pains to describe in these
pages. Our gauge theorist, on the other hand, takes (because he is invariably
forced to take) aaa—whence also j—to be a 1-form, with the consequence that f
is in all cases a 2-form. But a 2-dimensional 2-form has only a single degree of
freedom:

f ≺ ||fµν = εµνf || =
(

0 f
−f 0

)
f is a psuedo-scalar field, the dual of a scalar field

And from this it follows68 that the sourceless Maxwell equations ∗∗∗df = 0 are
devoid of content in the 2-dimensional gauge theory. The remaining equations
∂µfµν = jν , when spelled out, give

∂1f = j0 : compare Gauss’ Law (1.1)
∂0f = j1 : compare Maxwell’s adjustment (1.2) of Ampere’s Law

}
(123)

68 The operative mathematical circumstance here is this:

d(n-dimensional p -form) =
{

(p + 1)-form if p = 0, 1, 2, . . . , n− 1
0 if p = n
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of which charge conservation ∂0j0 + ∂1j1 = 0 is (use ∂0 = ∂0 and ∂1 = −∂1) an
immediate consequence. Writing

f = ∂0a1 − ∂1a0 (124)

the field equations become

∂1∂0a1 − ∂1∂1a0 = j0 and ∂0∂0a1 − ∂0∂1a0 = j1

Imposition of the Lorentz gauge condition ∂µaµ = ∂0a0 − ∂1a1 = 0 brings the
preceding equations to the form

a0 = j0 and a1 = j1 (125)

And if we introduce

L = 1
2 (∂0a1 − ∂1a0)2 − (j0a0 − j1a1) (126)

then we are led back to the field equations −∂1f + j0 = 0 and ∂0f − f1 = 0. In
some respects this “gauge theorists version of 2-dimensional electrodynamics”
possesses a more pronouncedly “Maxwellian feel” than does the theory which
I introduced at (12); David Griffiths has remarked that it can, in fact, be
considered to comprise an instance of Maxwellian electrodynamics, for it results
from (1) upon imposition of these specialized assumptions:

EEE =


 f(x0, x1)

0
0


, BBB = 000 , ρ = j0(x0, x1) and 1

c jjj =


 j1(x0, x1)

0
0




That such stringent conditions, once imposed, can self-consistently persist is
not immediately obvious, but is made obvious by the very existence of the
(self-consistent) gauge theory. The latter theory does, however, possess some
odd features; it makes no provision for any analog of “magnetism.” And it
draws upon the services of a potential which is (uniquely, in my experience)
more complicated than the thing it describes. It might be interesting on another
occasion to explore more detailed ramifications of the gauge theory, which would
appear to possess its own kind of “tutorial potential.” But my immediate
objective in this discussion has now been achieved: we have established that
the theory implicit in (12) is not a gauge theory. And it has been brought
vividly to our attention that the equations

∗∗∗d∗∗∗F = J and ∗∗∗d F = 0 (9)

admit of a great variety of alternative realizations, of which we have addressed
only two; to select one realization over another is to emphasize some of the
structural elements of Maxwellian electrodynamics at—inevitably—the expense
of others. It is interesting that Lorentz covariance is a shared feature of all such
theories.
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12. Phenomenological models of materials. It was Lorentz who taught us to do
our serious electrodynamics in a vacuum; Maxwell himself was a creature of the
Victorian laboratory, obligated to explore simultaneously and in tandum

• the dynamics of the electromagnetic field and
• the (gross) electromagnetic properties of (simple bulk) materials (in the

weak-field approximation).
“Maxwell’s equations,” as they came from his desk, more nearly resembled69

1
ε0
∇·∇·∇·D = ρ

µ0∇∇∇×H− 1
cε0
∂
∂tD = 1

c j

∇·∇·∇·B = 0
∇∇∇× E + 1

c
∂
∂tB = 0

than (1), and are indeterminate in the absence of “constitutive relations” that
describe D and H in terms of E and B. In the simplest case one has

D = εE and H = 1
µB

where ε and µ are constants characteristic of the material (sealing wax, whale
oil, . . . ); in vacuum ε→ ε0, µ→ µ0 and one recovers (1).

To phrase the issue a bit more abstractly, we expect in the presence of
electromagnetically active matter to write equations

∗∗∗d∗∗∗G = J and ∗∗∗d F = 0 (127)
|
G a material-dependent function of F; becomes F in vacuum

and on this basis to understand (9) as a “special case.” In §9 of some material
previously cited70 I discuss how the exterior calculus can be used to construct
an orderly survey of “all possible” constitutive relations. Here I am content
to limit my remarks to the simplest rudiments of this subject, as it relates to
2-dimensional electrodynamics.

In place of (13) we expect to have

µ0∂1H − 1
ε0
∂0D = J

∂1E − ∂0B = 0

}
(128.1)

to which we conjoin the relations

D = εE and H = 1
µB (128.2)

69 I take here certain gross liberties. For more careful discussion see §7.3 in
D. Griffiths, Introduction to Electrodynamics ().

70 See again footnote 3.
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Interior to such 1-dimensional material (but in the absence of J) we have

µ0
µ ∂1B − ε

ε0
∂0E = 0

∂1E − ∂0B = 0

These can be “uncoupled by differentiation;” hitting the former with ∂0 and
the latter with ∂1 (and then reversing that procedure) we obtain equations that
can be written

(∂2
x − 1

u2 ∂
2
t )E = 0

(∂2
x − 1

u2 ∂
2
t )B = 0

}
(129)

u ≡
√
ε0µ0
ε µ · c ≤ c under natural conditions

Formal problems famously arise in connection with determination of the correct
Lorentz covariant description of electromagnetic fields in the presence of media
(especially media in differential motion).71 Our toy theory would appear to
provide a useful laboratory within which to explore such problems.

13. Remarks concerning solutions of the field equations. The analytical problem
posed by Maxwellian electrodynamics is (in Lorentz gauge, and in the presence
of a prescribed source Jµ) to solve a quartet of uncoupled equations

Aµ = Jµ (8)

subject to prescribed initial and boundary conditions. The 2-dimensional theory
provides a single instance

A = J (17)

of such an equation, and puts one in position to appropriate all that is known
concerning the physics of forced strings. My purpose here will be not to review
the considerable body of theory relating to the latter topic,72 but to examine
only a few topics illustrative of the “tutorial potential” of the 2-dimensional
theory.

In the absence of sources we have (see again (13))

∂1B − ∂0E = 0
∂1E − ∂0B = 0

}
(130)

which was seen at (15) to entail

Fµ = 0 where again
(
F0

F1

)
≡

(
E
B

)
(131)

71 Such problems provided the principal motivation for the work to which I
alluded in the preceding footnote..

72 For elaborately detailed discussion of that topic see analytical methods
of physics (), pp. 221–433.
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If we had interest in “running wave solutions” of (131) we would find it natural
to write73

E(x, t) = Eei[k0x±ω0t] and B(x, t) = Bei[k1x±ω1t]

and to insist that (ω, k)0 and (ω, k)1 be (possibly independent) solutions of

k2 − (ω/c)2 = 0 (132)

The field equations (130) serve, however, to restrict our seeming options; we find
ourselves obligated to insist that (ω, k)0 and (ω, k)1 refer to the same solution
of (132), and moreover that

B = ±E according as ω/c = ±k

The running wave solutions of (131) have therefore the form

F(x, t) = FFF · ei[kx±ωt] ≺
(

E

±E

)
ei[kx±ωt]

The components of Fµ must, in other words, be synchronized. The amplitude
of the magnetic component of the field must, moreover, be correlated with the
amplitude of the electrical component, and that correlation is of such a nature
as to achieve

momentum density ≡ −EB ≷ 0 according as the wave runs right or left

This result is consonant with the “antiparallelism condition” that was obtained
near the end of §6 by more general means; i.e., without specific reference to
running waves. The preceding argument captures the main features of the
argument that in Maxwellian electrodynamics74 gives rise to the “transverse
plane waves” so characteristic of that theory. In 2-dimensional theory it would,
of course, be senseless to speak of “plane waves,” and doubly senseless to speak
of “transverse plane waves with E ⊥B;” it is of interest that the role of the latter
condition has in 2-dimensional theory been taken over by an antiparallelism
condition.

In 2-dimensions—exceptionally—the wave operator factors within the field
of complex numbers75

= (∂0 + ∂1)(∂0 − ∂1) (133)

From this it follows that every solution of A = 0 can be described

A(x0, x1) = f(x1 − x0) + g(x1 + x0) (134)

73 I find it convenient here to revert to pre-relativistic {x, t} notation.
74 See classical electrodynamics (), pp. 338–344.
75 To achieve factorization when n > 2 one must—à la Dirac—have recourse

to the Clifford numbers, and attend carefully to the complications that derive
from non-commutivity.
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where f(•) and g(•) are arbitrary functions of a single argument. Evidently

f(x1 − x0) glides rigidly to the right, with speed c, while

g(x1 + x0) glides rigidly to the left

Suppose (allowing ourselves on occasion to adopt the simplified notation
x← x1) we are given this initial data:

A(x) ≡ A(0, x) and B(x) ≡ ∂0A(x0, x)
∣∣∣
x0=0

≡ A0(0, x) are prescribed

Then

f (x) + g (x) = +A(x)

f ′(x)− g′(x) = −B(x) =⇒ f (x)− g (x) = −
∫ x

B(y) dy

from which we obtain

f(x) = 1
2

{
A(x)−

∫ x
B(y) dy

}
g(x) = 1

2

{
A(x) +

∫ x
B(y) dy

}

giving

A(x0, x1) = 1
2

{
A(0, x1 − x0) + A(0, x1 + x0)

}
+ 1

2

∫ x1+x0
x1−x0

A0(0, y) dy (135)

This result, which provides an explicit description of the solution of A = 0
that evolves from prescribed initial data, was known to d’Alembert already in
, when the theory of partial differential equations was still in its infancy.
That the right side of (135) does in fact conform to the prescribed data—and
that it serves not only to predict but also to retrodict—is manifest.

We obtained (135) by the most elementary of means. It is a remarkable fact
that one can, by a chain of argument which at every link is equally elementary,
proceed from (135) to a description in the n-dimensional case of the A(x)
which satisfies A = J and at the same time conforms to prescribed initial
data. One can, in short, extract from (135) an account of the general theory
of the Green’s functions of operators—stripped of the apparatus (Fourier
transformation, introduction of hyperspherical coordinates, delicate contour
integration) that standardly encumbers that theory. The following remarks
are intended to provide an outline of the program to which I allude; details are
developed elsewhere.
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step one: establish contact with the notations of green. We notice
that the integral in (135) can be described

1
2

∫ x1+x0
x1−x0

A0(0, y) dy =
∫ +∞

−∞
∆0(x0, x1 − y)︸ ︷︷ ︸A0(0, y) dy

≡ 1
2

{
θ
(
y − (x1 − x0)

)
− θ

(
y − (x1 + x0)

)}
where ∆0(x0, x1 − y) is simply a “switch,” installed to turn the integrand on
and off, automatically. We observe, moreover, that

∂0∆0(x0, x1 − y) = 1
2

{
δ
(
y − (x1 − x0)

)
+ δ

(
y − (x1 + x0)

)}
and that (135) can, in these notations, be written

A(x0, x1) =
∫ +∞

−∞

{
A(0, y)∂0∆0(x0, x1 − y)

+∆0(x0, x1 − y)A0(0, y)
}
dy

(136.1)

Setting A(0, y) = 0 and A0(0, y) = δ(y) we see that ∆0(x0, x1) is itself the
solution of ∆ = 0 that evolves from the especially simple initial data

∆0(0, x1) = 0 and ∂0∆0(x0, x1)
∣∣∣
x0=0

= δ(x1)

For a diagramatic representation of the functional structure of ∆(x0−y0, x1−y1)
see Figure 2.

step two: take sources into account. The idea is to write

A = Afree + Aforced

where Afree is the solution of A = 0 that evolves from the prescribed initial
data (as described already by (136.1)), and Aforced is the solution of A = J
that is initally null. Writing

Aforced(x0, x1) =
∫ ∫

∆(x0 − u, x1 − y)J(u, y) dudy (136.2)

we are led to impose upon ∆(•, •) the requirement

∆(x0 − u, x1 − y) = δ(x0 − u)δ(x1 − y) (137)

It can be shown by elementary means76 that a simple “truncation process”

∆0(x0, x1) −−−−−−−−→
truncation

∆(x0, x1) ≡ θ(x0) ·∆0(x0, x1)

yields a ∆(•, •) with all the required properties: it satisfies (137), and when
inserted into (136.2) entails A(0, x1) = 0 provided the

∫∫
is taken to range on

the spacetime region bounded by the timeslices identified in Figure 3.

76 See §3 of “Formal theory of singular functions” () for details.
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x

u

y

+

_

x0

Figure 2: The homogeneous Green’s function ∆(x0−u, x1−y) has
the constant value + 1

2 on the interior of the lightcone that extends
backward from the field point (x0, x1), and the constant value − 1

2 on
the forward lightcone. It vanishes exterior to the lightcone. Initial
data A(0, y) and A0(0, y) is spread like peanut butter on the timeslice
x0 = 0, but only the data interior to the cone (represented by a
heavy line in the figure) contributes according to (136.1) to the value
assumed by Afree(x0, x1).
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x

u

y

x0

Figure 3: “Truncation” of ∆(x0 − u, x1 − y) (elimination of the
forward sector) yields the retarded solution of the inhomogeneous
wave equation (137). The curve represents the activity of a source
(here—for diagramatic convenience—a point source). Only the
source data interior to the shaded region (bounded below by the
timeslice on which the initial data is inscribed, and above by the
timeslice that contains the fieldpoint ) contributes according to
(136.2) to the value assumed by Aforced(x0, x1). Superposition gives
the function

A(x0, x1) = Afree(x0, x1) + Aforced(x0, x1)

which satisfies A = J and at the same time satisfies the prescribed
initial conditions.
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step three: dimensional generalization. d’Alembert has supplied us
with motivation to introduce a homogeneous Green’s function ∆0(x0−u, x1−y)
which we agree at this point to notate ∆0

1(x
0−y0, x1−y1) in order to emphasize

that it is the n = 1 member of a population of functions

∆0
n(x

0 − y0, x1 − y1, . . . , xn − yn)

which satisfy

{
∂2
0 − ∂2

1 − ∂2
2 − · · ·−∂2

n

}
∆0
n = 0

n ≡ dimension of space

We have

∆0
1(x

0 − y0, x1 − y1)

= 1
2

{
θ
(
y1 − [x1 − (x0 − y0)]

)
− θ

(
y1 − [x1 + (x0 − y0)]

)}
= 1

2ε(x
0 − y0) · θ

(
(x0 − y0)2 − (x1 − y1)2︸ ︷︷ ︸ )

≡ σ ≡ (x0 − y0)2 − r2

In the ’s Marcel Reisz, in a famous application of the fractional calculus,
managed to invert what Jacques Hadamard, a decade earlier, had called the
“method of (dimensional) descent;” Reisz—building upon the circumstance
that (consistently with the result just established in the case n = 1) the variables
{x0, x1, . . . , xn; y0, y1, . . . , yn} enter into the structure of ∆0

n only in lumped
combination

∆0
n = ∆0

n(σ) with σ ≡ (x0 − y0)2−r2

r2 ≡ (x1 − y1)2 + · · ·+ (xn − yn)2

—showed that the functions ∆0
n(σ) are interlinked by a network of very simple

relations77

∆1 −−−−−−→ ∆3 −−−−−−→ ∆5 −−−−−−→ ∆7

↘ ↗ ↘ ↗ ↘ ↗ . . . etc.
∆2 −−−−−−→ ∆4 −−−−−−→ ∆6

where the horizontal arrows refer to the action of 1
π
∂
∂σ = − 1

2πr
∂
∂r and the

diagonal arrows refer to the action of the semi-differentiation operator
(

1
π
∂
∂σ

) 1
2 .

Writing
∆0

1(σ) = ± 1
2θ(σ)

(take + in the backward lightcone, − in the forward cone), the fractional
calculus supplies

∆0
2(σ) = ± 1

2πσ
− 1

2 θ(σ)

77 For details see §7 of “Construction & physical application of the fractional
calculus” () and additional sources cited there.
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When n is odd, Riesz’ construction gives

∆0
1(σ) = ± 1

2θ(σ)
↓

∆0
3(σ) =

(
1
π
∂
∂σ

)1∆0
1(σ) = ± 1

2π δ(σ)

∆0
5(σ) =

(
1
π
∂
∂σ

)2∆0
1(σ) = ± 1

2π2 δ
′(σ)

...
∆0

2n+1(σ) =
(

1
π
∂
∂σ

)n∆0
1(σ) = ± 1

2πn δ
(n)(σ)

When n is even the situation is significantly more complicated and qualitatively
distinct, but for the simplest of reasons; Riesz’ construction gives

∆0
2(σ) = ± 1

2πσ
− 1

2 θ(σ)
↓

∆0
4(σ) =

(
1
π
∂
∂σ

)1∆0
2(σ) = ± 1

2π2

{
σ− 1

2 δ(σ)− 1
2σ

− 3
2 θ(σ)

}
∆0

6(σ) =
(

1
π
∂
∂σ

)2∆0
2(σ) = ± 1

2π3

{
σ− 1

2 δ′(σ)− σ− 3
2 δ(σ) + 3

4σ
− 5

2 θ(σ)
}

...

∆0
2n+2(σ) =

(
1
π
∂
∂σ

)n∆0
2(σ) = ± 1

2πn+1

n∑
p=0

(
n
p

)[
σ− 1

2
](p)[

θ(σ)
](n−p)

where
[
σ− 1

2
](p) = (−)p (2p)!

22pp!
σ− 1

2−p and
[
θ(σ)

](n−p) = δ(n−p−1)(σ) : 0 ≤ p < n.
From these results we learn that

• In all cases, ∆0
n(σ) vanishes outside the lightcone;

• ∆0
odd≥3(σ) is singular on the lightcone, but vanishes inside;

• ∆0
even(σ) is singular on the lightcone, but—owing to the

presence of a “dangling θ-function”—fails to vanish inside
(as also does ∆0

1(σ)); it follows that radiative events in odd-
dimensional spacetimes have persistent local effects. This
is in sharp contrast to the situation in spacetimes of even
dimension n + 1 ≥ 4.

Such commentary is of only incidental interest to our friend, the one-dimensional
physicist, who simply wants to get on with his 2-dimensional electrodynamical
work. But it does serve to illustrate the “tutorial (2-torial?) potential” of the
2-dimensional formalism, and to make vivid the sense in which ∆0

1 serves as a
“seed” from which the entire theory can be harvested; it underscores a sense
in which the physical case n = 3 (Lienard-Wiechert) is “special,” and it draws
attention to an analytical consequence (θ instead of δ) of the fact that in 1-space
“to fall off geometrically” means “to fall off not at all.” Though phrased in terms
of ∆0

n, the discussion pertains straightforwardly to the truncated functions ∆n.
Less obviously, it pertains also to the theory of Klein-Gordon Green’s functions.
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I turn now from dynamics to consideration of the static solutions of the
field equations (13), which for present purposes read

∂1B = J

∂1E = 0

Once again, we find it convenient to adopt a simplified notation: x ←− x1.
Immediately78

B(x) =
∫ x

J(y) dy + constant

E(x) = constant

I elect not to restrict my attention to “fields interior to a box,” and am forced
therefore by the physical requirement that

total field energy ≡
∫ +∞

−∞
E(x) dx <∞

E(x) = 1
2 (E2 + B2)

to set the constant value of E equal to zero. In 2-dimensional theory a static field
can, on such grounds, be argued to be not “electrostatic” but “magnetostatic.”
Suppose the source to be a

point source : J(x) =g · δ(x− a)
g ≡ “magnetic charge” : [g] = [B]

Then

B(x) =
{

constant : x < a

constant + g : a < x

which in all non-trivial cases describes a field of infinite energy. To avoid the
latter problem79 we assemble a

“magnetic dipole” : J(x) = g ·
{
δ(x + a)− δ(x− a)

}
Then

B(x) =




constant : x < −a
constant + g : −a < x < +a

constant : +a < x

which has finite energy

E(a) =
∫

E(x) dx = g2a

78 Here consequences of a point just remarked (“to fall off geometrically” is,
in the one-dimensional case, to fall off not at all) become starkly evident.

79
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provided we assign a null value to the constant. From

− ∂∂aE(a) = −g2

we learn that opposite magnetic charges attract one another with a force that is
independent of separation. Note that the field energy is confined to the interior
of such a structure (and acquires an electrical component when the dipole and
observer are in relative motion). Note also that such a structure can be assigned
an

effective mass m = g2a/c2

that gets larger as the size parameter a increases; this is the reverse of the
situation made familiar by our 3-dimensional experience, where m = e2/ac2.
Note finally that, while in 3-dimensional theory it makes sense to speak of the
size of a massive monopole, in 2-dimensional theory the simplest structure to
which one can assign a natural size is a dipole.

14. Formal theory of blackbody radiation. Though I take my motivation from
the case n = 1, I find amusing (and moderately instructive) a pattern evident in
the details that would remain invisible were n not allowed to assume arbitrary
values.

Planck’s objective was to describe the functional structure of the “spectral
density function” u(ν, T ) which is characteristic of equilibrated radiation at
temperature T . Dimensionally

[spectral density] =
energy

(volume)·(frequency)
= action density

If we assume the “photon”80 to be massless and uncharged, then the only
variables available to us in constructing such a theory (I for the moment hold
Planck’s constant in reserve) are ν, c and kT . We might, on this basis, expect
to obtain

u(ν, T ) ∼ (ν/c)n(kT/ν) · ϕ(x)

where ϕ(x) is some presently undetermined function of the dimensionless
variable x. Since it is not possible to form such a variable from the material at
hand, one has seemingly no option but to set ϕ(x) = constant. But then

∫ ∞

0

u(ν, T ) dν =∞

which is clearly untenable; the services of ϕ(x)—the only device available to
discriminate against high frequencies—are evidently indispensable.

80 It serves my expository purposes thoughout this discussion to indulge freely
in anachronism.
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With Planck we set

x ≡ hν/kT with [h] = action

And with Planck (who borrowed the idea from Rayleigh) we require that the
“equipartition principle” hold at low frequencies (i.e., for x 1):

u(ν, T ) ≈ (modal density) · kT

where

(modal density) = (polarizational degrees of freedom)

× (area of n-sphere of radius ν)
cn

= 2 · (4πν2/c3) in the physical case n = 3

and where it’s because we are thinking now about “Hertzian oscillators” (which
possess both kinetic and potential energy) rather than free-flying “molecules”
that we write kT instead of the more familiar 1

2kT .81 In the n-dimensional case
we expect therefore to have

u(ν, T ) =# · 2π
n
2

Γ (n2 )
νn−1

cn
kT · ϕ( hνkT )

# ≡ polarizational degrees of freedom

Writing

u(ν, T ) = # · 2π
n
2

Γ (n2 )
· h(ν/c)n

[
kT
hν · ϕ( hνkT )

]
︸ ︷︷ ︸ (138)

Planck is at length led82 to set

=
1

ex − 1
(139)

= 1
x − 1

2 + 1
12x− 1

720x
3 + 1

30240x
5 + · · ·

Then

u(T ) = # · 2π
n
2

Γ (n2 )
·
∫ ∞

0

h(ν/c)n
1

exp
{
hv
kT

}
− 1

dν︸ ︷︷ ︸
= n!ζ(n + 1)

(kT )n+1

(2π�c)n

81 For discussion of this point see, for example, Max Born, The Mechanics
of the Atom () §1, or p. 76 in his Natural Philosophy of Cause & Chance
(). I return to the point later in the text.

82 I return later to review of the most essential steps in his clever chain of
argument.
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where the integral was supplied by Mathematica.83 We are led thus to the
dimensionally-generalized “Steffan-Boltzmann law”

u(T ) =aT n+1 (140)

a ≡ # · 2
(2
√
π)n

Γ (n + 1)ζ(n + 1)
Γ (n2 )

· k(k/�c)n︸ ︷︷ ︸ (141)

A(n)

Mathematica informs us that

A(1) = 3.15699× 10−21Joule/Meter Kelvin2

A(2) = 1.00749× 10−18Joule/Meter2Kelvin3

A(3) = 3.78296× 10−16Joule/Meter3Kelvin4

...

and that A(n + 1)/A(n) is a slowly growing function of n:

A(2)/A(1) = 319.128/Meter Kelvin
A(3)/A(2) = 375.485/Meter Kelvin
A(4)/A(3) = 418.389/Meter Kelvin

...
A(11)/A(10) = 621.189/Meter Kelvin

A(101)/A(100) = 1764.03/Meter Kelvin
A(1001)/A(1000) = 5516.11/Meter Kelvin

...

It is of formal interest that (141) makes sense even when n is not an integer.

Concerning the function #(n), all that is known with certainty is that
#(3) = 2. One expects intuitively (but with a low level of confidence) to have

#(n) =
{

1 : n = 1
n− 1 : n = 2, 3, 2, . . .

but to secure such a result one must first possess an “electrodynamics in
(n + 1)-dimensional spacetime,” and then, working within the framework of
such a theory, must develop a theory of plane waves. Theories of the sort I have
proposed become available only when n is odd; gauge theories are available for
all values of n, but appear to present interpretive problems.

83 But see 23.2.7 and 27.1.3 in Abramowitz & Stegun.
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I look now to the n-dimensional generalization of Boltzmann’s celebrated
thermodynamic derivation () of (140).84 We proceed from the assertions
that the internal energy U of a boxfull (hypervolume V , with [V ] = (length)n)
of thermalized radiation can be described

U(T, V ) = V · u(T ) (142)

and that the pressure p is given by

p = 1
n · u(T ) (143)

Thermodynamics85 supplies the identity(
∂U

∂V

)
T

= T 2

(
∂

∂T

p

V

)
V

which in the application at hand becomes

T
du

dT
= (n + 1)u or again

du

u
= (n + 1)

dT

T

from which
u(T ) = constant · Tn+1

follows at once. Planck’s accomplishment was, inter alia, to provide a unique
theoretical evaluation of the constant of integration. To better comprehend
(142) and (143)—of which the Steffan-Boltzmann law is seen now to be an
almost immediate consequence—it is useful to set up a point-by-point
comparison with the corresponding ideal gas relations. Writing

Uradiation(T, V ) = V · u(T ) : Ugas(T, V,N) = NcV T

it becomes striking that the expression on the left makes no reference to the
“number” of “photons” present in the sample, and that for radiation U/V is a
universal function of T. For gases the striking fact is that U (not U/V ) is itself
V -independent, though not universal: U depends both on the size N of the
sample and (through cV ) upon its specific construction. Kinetic theory supplies

Ugas = number of degrees of freedom · 1
2kT

which for a monomolecular gas entails cV = 3
2k, giving

U = 3
2NkT = 3

2pV by the gas law
↓
p = 2

3u(T,N) where u ≡ U/V : energy density of gas

84 A “true pearl of theoretical physics” in the estimation of Lorentz. See
Chapter 3, p. 110 of statistical physics (), and additional references
cited there.

85 See p. 59 in the notes just cited. This frequently useful identity is sometimes
called the “thermodynamic equation of state.”
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It was by one of the first significant applications of Maxwellian electrodynamics
that Boltzmann was led to the conclusion86 that

p = 1
3u(T ) for incoherent radiation

Presumably, “n-dimensional electrodynamics” leads by similar argument to
(143), but I myself have not constructed the demonstration.87 That is why,
in the title to this section, I allude to a “formal theory. . . ” It is tempting
to suppose that the “disappearance of the 2-factor” can be attributed to the
following circumstance:

momentum = 2
energy
velocity

: non-relativistic mass point

momentum =
energy
velocity

: photon

Planck had been working on the blackbody radiation problem for the better part
of a decade by the time—December , the final month of the
19th Century—he experienced his revolutionary breakthrough. The story of
that month’s effort cleaves naturally into two parts, both of which involve steps
only someone throughly saturated in a problem would think to take. Writing

u(ν, T ) = (modal density)·Uν(T )
Uν(T ) ≡ energy density per mode

he first sought a function Uν(T ) with the properties that

Uν(T ) ∼
{
kT hν  kT (Rayleigh)
hν exp

{
− hνkT

}
hν ' kT (Wien)

To that end he introduced

Sν(T ) ≡ entropy density per mode

and by appropriation of ∂S∂U = 1
T obtained

∂Sν
∂Uν

=
{

+ k
Uν

hν  kT (Rayleigh)
− khν log Uν

hν hν ' kT (Wien)

↓
∂2Sν
∂U2
ν

=

{
− kU2

ν
hν  kT (Rayleigh)

− k
hνUν

hν ' kT (Wien)

86 See §11.3 of W. Panofsky & M. Phillips, Classical Electricity & Magnetism
() for the details.

87 Nor, for that matter, have I constructed an n-dimensional thermodynamic/
kinetic theory of ideal gases; such a project would seem too straightforward to
be interesting.
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The functions encountered in the final equation are so simple—and so similar—
as to have inspired Planck to take an interpolative leap, writing

∂2Sν
∂U2
ν

= −k 1
U2
ν + hνUν

= − k

hν

{
1
Uν
− 1

Uν + hν

}

Integrating his way back to his starting point, Planck obtained

Uν(T ) =
hν

exp
{
hν
kT

}
− 1

(Planck)

Thus was born the “Planck distribution,” which by interpolative design
displayed all the required limit properties. At this point Planck entered the
second phase of his project; from the preceding equation—written

∂Sν
∂Uν

=
1
T

= − k

hν
log

Uν
Uν + hν

—Planck by a final integration obtained

Sν = k
hν

{[
(Uν + hν) log(Uν + hν)− (Uν + hν)

]
−

[
Uν logUν − Uν

]}
from which he constructed

s(ν, T ) = (modal density) · Sν(T )
= result of what “counting problem”?

He was led and length and reluctantly to the conclusion that to resolve the
question just posed one had unavoidably to “quantize” the Hertzian oscillators.

I have reviewed the relevant details of this familiar story in order to place
myself in position to observe that at no point is Planck’s argument sensitive to
the dimension of spacetime. All dimension-dependent features of the problem
(including those responsible for the T n+1 in the Steffan-Boltzmann equation)
were excised upon removal of the modal density factor. Electrodynamics is in
many respects highly dimension-dependent, but it was from dimension-neutral
properties of the theory (and from dimension-neutral thermodynamics and
statistical mechanics) that quantum mechanics sprang, and from those that
it gained its own dimension-neutrality. The discussion has served also to focus
attention on this question: “How many degrees of freedom has an n-dimensional
photon?”

15. Conclusion and prospects. This essay has grown over-long, but in a sense
length itself is, in the present instance, the message: I have been at pains to
demonstrate that—contrary to popular belief—it makes good sense to speak of
a “2-dimensional electrodynamics,” and that such a theory provides simplified
analogs of virtually all the points of principle and technique familiar from
Maxwellian electrodynamics. The essay could, in principle, have mimiced both
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the design and the length of any standard electrodynamical text. It is as short
as it is only because I have omitted topics that could easily have been included;
I have, for instance, omitted any detailed reference to the internal symmetry
structure of the theory (which precisely duplicates that of Maxwellian theory),
and have elected not to include radiation theory (properties of the field produced
by—for example—a vibrating dipole).

The parallels are instructive (particularly since 2-dimensional arguments
tend to be more transparent than their 4-dimensional counterparts), but so
also are the points at which precise parallelism breaks down, for they cast fresh
light on what is “special” about Maxwellian electrodynamics, about “the world
which is” relative to worlds that might have been.

It would be interesting on some future occasion to look to the quantization
of the theory now in hand, to explore the outlines of “2-dimensional QED.” In
such a context the tutorial advantages of simplification would seem to be too
valuable to be wasted.

It is a pleasure to acknowledge my indebtedness to David Griffiths for
helpful discussion of several points, and especially for the casual question that
stimulated this entire enterprise.
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